
Maze

enliteAI GmbH

Feb 23, 2021

CONTENTS

1 Getting Started | | 1

2 Spotlights 209

3 Documentation Overview 211

4 Indices and tables 333

Index 335

i

ii

CHAPTER

ONE

GETTING STARTED |
GITHUB_LOGO1.PNG

|

1.1 Installation

To install Maze with pip, run:

pip install maze-rl

Note: Pip does not install PyTorch, you need to make sure it is available in your Python environment.

If you want to use RLLib it in combination with Maze, optionally install it with

pip install ray[rllib] tensorflow

To install the bleeding-edge development version from github, first clone the repo.

git clone https://github.com/enlite-ai/maze.git
cd maze

Finally, install the project with pip in development mode and you are good to go and ready to start developing.

pip install -e .

Alternatively you can install with pip directly from the GitHub repository

pip install git+https://github.com/enlite-ai/maze.git

1

https://pytorch.org/get-started/locally/
https://docs.ray.io/en/master/installation.html
https://github.com/enlite-ai/maze

Maze

1.2 A First Example

This example shows how to train and rollout a policy for the CartPole environment with A2C. It also gives a small
glimpse into the Maze framework.

1.2.1 Training and Rollouts

To train a policy with the synchronous advantage actor-critic (A2C), run:

maze-run -cn conf_train env.name=CartPole-v0 algorithm=a2c

All outputs of the training run including model weights will be stored in outputs/<exp-dir>.

To perform rollouts for evaluating the trained policy, run:

maze-run env.name=CartPole-v0 policy=torch_policy input_dir=outputs/<exp-dir>

This performs 50 rollouts and prints the resulting performance statistics to the command line:

step|path |
→˓ value
=====|==|==================

1|rollout_stats DiscreteActionEvents action substep_0/action | [len:7900,
→˓ :0.5]

1|rollout_stats BaseEnvEvents reward median_step_count |
→˓157.500

1|rollout_stats BaseEnvEvents reward mean_step_count |
→˓158.000

1|rollout_stats BaseEnvEvents reward total_step_count |
→˓7900.000

1|rollout_stats BaseEnvEvents reward total_episode_count |
→˓ 50.000

1|rollout_stats BaseEnvEvents reward episode_count |
→˓ 50.000

1|rollout_stats BaseEnvEvents reward std |
→˓ 31.843

1|rollout_stats BaseEnvEvents reward mean |
→˓158.000

1|rollout_stats BaseEnvEvents reward min |
→˓ 83.000

1|rollout_stats BaseEnvEvents reward max |
→˓200.000

To see the policy directly in action you can also perform sequential rollouts with rendering:

maze-run env.name=CartPole-v0 policy=torch_policy input_dir=outputs/<exp-dir> \
runner=sequential runner.render=true

2 Chapter 1. Getting Started | |

Maze

1.2.2 Tensorboard

To watch the training progress with Tensorboard start it by running:

tensorboard --logdir outputs/

and view it with your browser at http://localhost:6006/.

1.2.3 Training Outputs

For easier reproducibility Maze writes the full configuration compiled with Hydra to the command line an preserves it
in the TEXT tab of Tensorboard along with the original training command.

algorithm:
device: cpu
entropy_coef: 0.0
gae_lambda: 1.0
gamma: 0.98
lr: 0.0005
max_grad_norm: 0.0
n_rollout_steps: 20
policy_loss_coef: 1.0
value_loss_coef: 0.5

env:
(continues on next page)

1.2. A First Example 3

http://localhost:6006/

Maze

(continued from previous page)

env: CartPole-v0
type: maze.core.wrappers.maze_gym_env_wrapper.GymMazeEnv

log_base_dir: outputs
model:

type: maze.perception.models.template_model_composer.TemplateModelComposer
distribution_mapper_config: {}
model_builder:
type: maze.perception.builders.ConcatModelBuilder
modality_config:
feature:
block_params:
hidden_units: [32, 32]
non_lin: torch.nn.SELU

block_type: dense
hidden: {}
recurrence: {}

observation_modality_mapping:
observation: feature

critics:
type: maze.perception.models.critics.StateCriticComposer

...

You will also find PDFs showing the inference graphs of the policy and critic networks in the experiment output
directory. This turns out to be extremely useful when playing around with model architectures or when returning to
experiments at a later stage.

4 Chapter 1. Getting Started | |

Maze

1.3 Maze - Step by Step

This tutorial provides a step by step guide explaining how to implement your own Maze environment and get the best
out of its features. We will do this based on the online version of the Guillotine 2D Cutting Stock Problem as it is still
relatively simple but exhibits the required problem structure to introduce all relevant Maze concepts.

Before diving into this tutorial we recommend to read up on the Maze Environment Hierarchy. You can of course also
do this along the way following the provided links to explanations of the required concepts when we get there.

The remainder of this tutorial is structured as follows:

1.3.1 Cutting-2D Problem Specification

This page introduces the problem we would like to address with a Deep Reinforcement Learning agent: an online
version of the Guillotine 2D Cutting Stock Problem.

Description of Problem:

• In each step there is one new incoming customer order generated according to a certain demand pattern.

• This customer order has to be fulfilled by cutting the exact x/y-dimensions from a set of available candidate
pieces in the inventory.

• A new raw piece is transferred to the inventory every time the current raw piece in inventory is used to cut and
deliver a customer order.

1.3. Maze - Step by Step 5

Maze

• The goal is to use as few raw pieces as possible throughout the episode, which can be achieved by following a
clever cutting policy.

Agent-Environment Interaction Loop:

To make the problem more explicit from an RL perspective we formulate it according to the agent-environment inter-
action loop shown below.

• The State contains the dimensions of the currently pending customer orders and all pieces on inventory.

• The Reward is specified to discourage the usage of raw inventory pieces.

• The Action is a joint action consisting of the following components (see image below for details):

– Action 𝑎0: Cutting piece selection (decides which piece from inventory to use for cutting)

– Action 𝑎1: Cutting orientation selection (decides the orientation of the customer)

– Action 𝑎2: Cutting order selection (decides which cut to take first; x or y)

Given this description of the problem we will now proceed with implementing a corresponding simulation.

1.3.2 Implementing the CoreEnv

The complete code for this part of the tutorial can be found here

file structure
- cutting_2d

- main.py
- env

- core_env.py
- inventory.py
- maze_state.py
- maze_action.py

6 Chapter 1. Getting Started | |

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part01_core_env

Maze

Page Overview

• CoreEnv

• Environment Components

• MazeState and MazeAction

• Test Script

CoreEnv

The first component we need to implement is the Core Environment which defines the main mechanics and function-
ality of the environment.

For this example we will call it Cutting2DCoreEnvironment. As for any other Gym environment we need to
implement several methods according to the CoreEnv interface. We will start with the very basic components and
add more and more features (complexity) throughout this tutorial:

• step(): Implements the cutting mechanics.

• reset(): Resets the environment as well as the piece inventory.

• seed(): Sets the random state of the environment for reproducibility.

• close(): Can be used for cleanup.

• get_maze_state(): Returns the current MazeState of the environment.

You can find the implementation of the basic version of the Cutting2DCoreEnvironment below.

Listing 1: env/core_env.py

from typing import Union, Tuple, Dict, Any

import numpy as np

from maze.core.env.core_env import CoreEnv
from maze.core.utils.seeding import set_random_states

from .maze_state import Cutting2DMazeState
from .maze_action import Cutting2DMazeAction
from .inventory import Inventory

class Cutting2DCoreEnvironment(CoreEnv):
"""Environment for cutting 2D pieces based on the customer demand. Works as

→˓follows:
- Keeps inventory of 2D pieces available for cutting and fulfilling the demand.
- Produces a new demand for one piece in every step (here a static demand).
- The agent should decide which piece from inventory to cut (and how) to fulfill

→˓the given demand.
- What remains from the cut piece is put back in inventory.
- All the time, one raw (full-size) piece is available in inventory.

(If it gets cut, it is replenished in the next step.)
- Rewards are calculated to motivate the agent to consume as few raw pieces as

→˓possible.
- If inventory gets full, the oldest pieces get discarded.

(continues on next page)

1.3. Maze - Step by Step 7

Maze

(continued from previous page)

:param max_pieces_in_inventory: Size of the inventory.
:param raw_piece_size: Size of a fresh raw (= full-size) piece.
:param static_demand: Order to issue in each step.
"""

def __init__(self, max_pieces_in_inventory: int, raw_piece_size: (int, int),
static_demand: (int, int)):

super().__init__()

self.max_pieces_in_inventory = max_pieces_in_inventory
self.raw_piece_size = tuple(raw_piece_size)
self.current_demand = static_demand

setup environment
self._setup_env()

def _setup_env(self):
"""Setup environment."""
self.inventory = Inventory(self.max_pieces_in_inventory, self.raw_piece_size)
self.inventory.replenish_piece()

def step(self, maze_action: Cutting2DMazeAction) \
-> Tuple[Cutting2DMazeState, np.array, bool, Dict[Any, Any]]:

"""Summary of the step (simplified, not necessarily respecting the actual
→˓order in the code):

1. Check if the selected piece to cut is valid (i.e. in inventory, large
→˓enough etc.)

2. Attempt the cutting
3. Replenish a fresh piece if needed and return an appropriate reward

:param maze_action: Cutting MazeAction to take.
:return: maze_state, reward, done, info
"""

info, reward = {}, 0
replenishment_needed = False

check if valid piece id was selected
if maze_action.piece_id >= self.inventory.size():

info['error'] = 'piece_id_out_of_bounds'
perform cutting
else:

piece_to_cut = self.inventory.pieces[maze_action.piece_id]

attempt the cut
if self.inventory.cut(maze_action, self.current_demand):

info['msg'] = "valid_cut"
replenishment_needed = piece_to_cut == self.raw_piece_size

else:
assign a negative reward for invalid cutting attempts
info['error'] = "invalid_cut"
reward = -2

check if replenishment is required
if replenishment_needed:

self.inventory.replenish_piece()
(continues on next page)

8 Chapter 1. Getting Started | |

Maze

(continued from previous page)

assign negative reward if a piece has to be replenished
reward = -1

compile env state
maze_state = self.get_maze_state()

return maze_state, reward, False, info

def get_maze_state(self) -> Cutting2DMazeState:
"""Returns the current Cutting2DMazeState of the environment."""
return Cutting2DMazeState(self.inventory.pieces, self.max_pieces_in_inventory,

self.current_demand, self.raw_piece_size)

def reset(self) -> Cutting2DMazeState:
"""Resets the environment to initial state."""
self._setup_env()
return self.get_maze_state()

def close(self):
"""No additional cleanup necessary."""

def seed(self, seed: int) -> None:
"""Seed random state of environment."""
set_random_states(seed)

--- lets ignore everything below this line for now ---

def get_renderer(self) -> Any:
pass

def get_serializable_components(self) -> Dict[str, Any]:
pass

def is_actor_done(self) -> bool:
pass

def actor_id(self) -> Tuple[Union[str, int], int]:
pass

Environment Components

To keep the implementation of the core environment short and clean we introduces a dedicated Inventory class
providing functionality for:

• maintaining the inventory of available cutting pieces

• replenishing new raw inventory pieces if required

• the cutting logic of the environment

Listing 2: env/inventory.py

from .maze_action import Cutting2DMazeAction

class Inventory:
(continues on next page)

1.3. Maze - Step by Step 9

Maze

(continued from previous page)

"""Holds the inventory of 2D pieces and performs cutting.
:param max_pieces_in_inventory: Size of the inventory. If full, the oldest pieces

→˓get discarded.
:param raw_piece_size: Size of a fresh raw (= full-size) piece.
"""

def __init__(self, max_pieces_in_inventory: int, raw_piece_size: (int, int)):
self.max_pieces_in_inventory = max_pieces_in_inventory
self.raw_piece_size = raw_piece_size

self.pieces = []

== Inventory management ==

def is_full(self) -> bool:
"""Checks weather all slots in the inventory are in use."""
return len(self.pieces) == self.max_pieces_in_inventory

def store_piece(self, piece: (int, int)) -> None:
"""Store the given piece.
:param piece: Piece to store.
"""
If we would run out of storage space, discard the oldest piece first
if self.is_full():

self.pieces.pop(0)
self.pieces.append(piece)

def replenish_piece(self) -> None:
"""Add a fresh raw piece to inventory."""
self.store_piece(self.raw_piece_size)

== Cutting ==

def cut(self, maze_action: Cutting2DMazeAction, ordered_piece: (int, int)) ->
→˓bool:

"""Attempt to perform the cutting. Remains of the cut piece are put back to
→˓inventory.

:param maze_action: the cutting maze_action to perform
:param ordered_piece: Dimensions of the piece that we should produce
:return True if the cutting was successful, False on error.
"""
if maze_action.rotate:

ordered_piece = ordered_piece[::-1]

Check the piece ID is valid
if maze_action.piece_id >= len(self.pieces):

return False

Check whether the cut is possible
if any([ordered_piece[dim] > available_size for dim, available_size

in enumerate(self.pieces[maze_action.piece_id])]):
return False

Perform the cut
cutting_order = [1, 0] if maze_action.reverse_cutting_order else [0, 1]
piece_to_cut = list(self.pieces.pop(maze_action.piece_id))

(continues on next page)

10 Chapter 1. Getting Started | |

Maze

(continued from previous page)

for dim in cutting_order:
residual = piece_to_cut.copy()
residual[dim] = piece_to_cut[dim] - ordered_piece[dim]
piece_to_cut[dim] = ordered_piece[dim]
if residual[dim] > 0:

self.store_piece(tuple(residual))

return True

== State representation ==

def size(self) -> int:
"""Current size of the inventory."""
return len(self.pieces)

MazeState and MazeAction

As motivated and explained in more detail in our tutorial on Customizing Core and Maze Envs CoreEnvs rely on
MazeState and MazeAction objects for interacting with an agent.

For the present case this is a Cutting2DMazeState

Listing 3: env/maze_state.py

class Cutting2DMazeState:
"""Cutting 2D environment MazeState representation.
:param inventory: A list of pieces in inventory.
:param max_pieces_in_inventory: Max number of pieces in inventory (inventory

→˓size).
:param current_demand: Piece that should be produced in the next step.
:param raw_piece_size: Size of a raw piece.
"""

def __init__(self, inventory: [(int, int)], max_pieces_in_inventory: int,
current_demand: (int, int), raw_piece_size: (int, int)):

self.inventory = inventory.copy()
self.max_pieces_in_inventory = max_pieces_in_inventory
self.current_demand = current_demand
self.raw_piece_size = raw_piece_size

and a Cutting2DMazeAction defining which inventory piece to cut in which cutting order and orientation.

Listing 4: env/maze_action.py

class Cutting2DMazeAction:
"""Environment cutting MazeAction object.
:param piece_id: ID of the piece to cut.
:param rotate: Whether to rotate the ordered piece.
:param reverse_cutting_order: Whether to cut along Y axis first (not X first as

→˓normal).
"""

def __init__(self, piece_id: int, rotate: bool, reverse_cutting_order: bool):
self.piece_id = piece_id
self.rotate = rotate
self.reverse_cutting_order = reverse_cutting_order

1.3. Maze - Step by Step 11

Maze

These two classes are utilized in the CoreEnv code above.

Test Script

The following snippet will instantiate the environment and run it for 15 steps.

Listing 5: main.py

""" Test script CoreEnv """
from tutorials.tutorial_maze_env.part01_core_env.env.core_env import
→˓Cutting2DCoreEnvironment
from tutorials.tutorial_maze_env.part01_core_env.env.maze_action import
→˓Cutting2DMazeAction

def main():
init and reset core environment
core_env = Cutting2DCoreEnvironment(max_pieces_in_inventory=200, raw_piece_

→˓size=[100, 100],
static_demand=(30, 15))

maze_state = core_env.reset()
run interaction loop
for i in range(15):

create cutting maze_action
maze_action = Cutting2DMazeAction(piece_id=0, rotate=False, reverse_cutting_

→˓order=False)
take actual environment step
maze_state, reward, done, info = core_env.step(maze_action)
print(f"reward {reward} | done {done} | info {info}")

if __name__ == "__main__":
""" main """
main()

When running the script you should get the following command line output:

reward -1 | done False | info {'msg': 'valid_cut'}
reward 0 | done False | info {'msg': 'valid_cut'}
reward 0 | done False | info {'msg': 'valid_cut'}
...

1.3.3 Adding a Renderer

The complete code for this part of the tutorial can be found here

file structure
- cutting_2d

- main.py # modified
- env

- core_env.py # modified
- inventory.py
- maze_state.py
- maze_action.py
- renderer.py # new

12 Chapter 1. Getting Started | |

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part02_renderer

Maze

Page Overview

• Renderer

• Updating the CoreEnv

• Test Script

Renderer

To check whether our implementation of the environment works as expected and to later on observe how trained agents
behave we add a Renderer as a next step in this tutorial.

For implementing the renderer we rely on matplotlib to ensure that it is compatible with the Maze Rollout Visualization
Tools.

The Cutting2DRendererwill show the selected piece (the MazeAction) on the left, along with the current MazeS-
tate of the inventory on the right as shown here.

Listing 6: env/renderer.py

from typing import Tuple, Optional

import numpy as np
import matplotlib.patches as patches
import matplotlib.pyplot as plt

from maze.core.annotations import override
from maze.core.log_events.step_event_log import StepEventLog
from maze.core.rendering.renderer import Renderer
from .maze_action import Cutting2DMazeAction
from .maze_state import Cutting2DMazeState

class Cutting2DRenderer(Renderer):
"""Rendering class for the 2D cutting env.

The ``Cutting2DRenderer`` will show the selected piece (the maze_action) on the
→˓left,

plus the current state of the inventory on the right
"""

@override(Renderer)
def render(self, maze_state: Cutting2DMazeState, maze_action:

→˓Optional[Cutting2DMazeAction], events: StepEventLog) -> None:
"""
Render maze_state and maze_action of the cutting 2D env.

:param maze_state: MazeState to render
:param maze_action: MazeAction to render
:param events: Events logged during the step (not used)
"""

plt.figure("Cutting 2D", figsize=(8, 4))
plt.clf()

(continues on next page)

1.3. Maze - Step by Step 13

https://matplotlib.org/

Maze

(continued from previous page)

The maze_action taken

plt.subplot(121, aspect='equal')
if maze_action is not None:

self._plot_maze_action(maze_action, "MazeAction", maze_state)
else:

self._add_title("MazeAction (none)")

The inventory state
plt.subplot(122, aspect='equal')
self._plot_inventory(maze_state, maze_action)

plt.tight_layout()
plt.draw()
plt.pause(0.1)

def _plot_maze_action(self, maze_action: Cutting2DMazeAction, title: str, maze_
→˓state: Cutting2DMazeState):

piece_to_cut = maze_state.inventory[maze_action.piece_id]
if maze_action.rotate:

piece_to_cut = piece_to_cut[::-1]

plt.xlim([0, maze_state.raw_piece_size[0]])
plt.ylim([0, maze_state.raw_piece_size[1]])

self._draw_piece(piece_to_cut)
self._draw_piece(maze_state.current_demand, highlight=True)
self._draw_cutting_lines(maze_state.current_demand, piece_to_cut, maze_action.

→˓reverse_cutting_order)
self._add_title(title)

def _plot_inventory(self, maze_state: Cutting2DMazeState, maze_action:
→˓Cutting2DMazeAction):

plot inventory pieces
inventory_piece_dims = np.vstack(maze_state.inventory)
inventory_piece_dims = np.sort(inventory_piece_dims, axis=1)
plt.plot(inventory_piece_dims[:, 0], inventory_piece_dims[:, 1], "ko",

alpha=0.5, label="inventory pieces")
plot current demand
current_demand = sorted(maze_state.current_demand)
plt.plot(current_demand[0], current_demand[1], "o",

color=(0.7, 0.2, 0.2), alpha=0.75, label="current demand")
plot maze_action
piece_to_cut = inventory_piece_dims[maze_action.piece_id]
plt.plot(piece_to_cut[0], piece_to_cut[1], "bo",

alpha=0.75, label="cutting inventory piece")
plt.grid()
plt.legend()
plt.axis("equal")
self._add_title("Inventory Pieces")

@staticmethod
def _draw_piece(piece: Tuple[int, int], highlight: bool = False):

plt.gca().add_patch(patches.Rectangle((0, 0), piece[0], piece[1],
facecolor=(0.7, 0.2, 0.2) if highlight

→˓else (0.8, 0.8, 0.8)))
(continues on next page)

14 Chapter 1. Getting Started | |

Maze

(continued from previous page)

@staticmethod
def _add_title(title: str):

plt.title(title, fontdict=dict(fontsize=16, fontweight='bold',
→˓horizontalalignment='left'), loc='left')

@staticmethod
def _draw_cutting_lines(ordered_piece: Tuple[int, int], piece_to_cut: Tuple[int,

→˓int], reverse_cutting_order: bool):
"""Draw the cutting lines.

:param ordered_piece: Size of the ordered piece
:param piece_to_cut: Piece which we are cutting
:param reverse_cutting_order: If we should cut along Y axis first (instead of

→˓X first)
"""

if reverse_cutting_order:
h_x = (0, piece_to_cut[0])
h_y = (ordered_piece[1], ordered_piece[1])
v_x = (ordered_piece[0], ordered_piece[0])
v_y = (0, ordered_piece[1])

else:
h_x = (0, ordered_piece[0])
h_y = (ordered_piece[1], ordered_piece[1])
v_x = (ordered_piece[0], ordered_piece[0])
v_y = (0, piece_to_cut[1])

plt.plot(h_x, h_y, color='black', linestyle="--")
plt.plot(v_x, v_y, color='black', linestyle="--")

Updating the CoreEnv

To make use of the renderer we simple have to instantiate it in the constructor of the CoreEnv and make it accessible
via the get_renderer() method.

Listing 7: env/core_env.py

from .renderer import Cutting2DRenderer
...

class Cutting2DCoreEnvironment(CoreEnv):

def __init__(self, max_pieces_in_inventory: int, raw_piece_size: (int, int),
→˓static_demand: (int, int)):

super().__init__()

initialize rendering
self.renderer = Cutting2DRenderer()
...

def get_renderer(self) -> Cutting2DRenderer:
"""Cutting 2D renderer module."""
return self.renderer

1.3. Maze - Step by Step 15

Maze

Test Script

The following snippet will instantiate the environment and run it for 15 steps.

Listing 8: main.py

""" Test script CoreEnv """
from tutorials.tutorial_maze_env.part02_renderer.env.core_env import
→˓Cutting2DCoreEnvironment
from tutorials.tutorial_maze_env.part02_renderer.env.maze_action import
→˓Cutting2DMazeAction

def main():
init and reset core environment
core_env = Cutting2DCoreEnvironment(max_pieces_in_inventory=200, raw_piece_

→˓size=[100, 100],
static_demand=(30, 15))

maze_state = core_env.reset()
run interaction loop
for i in range(15):

create cutting maze_action
maze_action = Cutting2DMazeAction(piece_id=0, rotate=False, reverse_cutting_

→˓order=False)

render current state along with next maze_action
core_env.renderer.render(maze_state, maze_action, None)

take actual environment step
maze_state, reward, done, info = core_env.step(maze_action)
print(f"reward {reward} | done {done} | info {info}")

if __name__ == "__main__":
""" main """
main()

When running the script you should get the following command line output:

reward -1 | done False | info {'msg': 'valid_cut'}
reward 0 | done False | info {'msg': 'valid_cut'}
reward 0 | done False | info {'msg': 'valid_cut'}
...

and a rendering of the current MazeState and MazeAction in each time step similar to the image shown below:

16 Chapter 1. Getting Started | |

Maze

The dashed line represents the cutting configuration specified with the MazeAction.

1.3.4 Implementing the MazeEnv

The complete code for this part of the tutorial can be found here

file structure
- cutting_2d

- main.py # modified
- env

- core_env.py # modified
- inventory.py
- maze_state.py
- maze_action.py
- renderer.py
- maze_env.py # new

- space_interfaces
- dict_action_conversion.py # new
- dict_observation_conversion.py # new

Page Overview

• MazeEnv

• ObservationConversionInterface

• ActionConversionInterface

• Updating the CoreEnv

• Test Script

1.3. Maze - Step by Step 17

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part03_maze_env

Maze

MazeEnv

The MazeEnv wraps the CoreEnvs as a Gym-style environment in a reusable form, by utilizing the interfaces (map-
pings) from the MazeState to the observation and from the MazeAction to the action. After implementing the MazeEnv
we will be ready to perform our first training run. To learn more about the usability and advantages of this concept
you can follow up on Customizing Core and Maze Envs.

In the remainder of this part of the tutorial we will implement the Cutting2DEnvironment (MazeEnv) as well as
a corresponding set of interfaces.

Listing 9: env/maze_env.py

from maze.core.env.core_env import CoreEnv
from maze.core.env.maze_env import MazeEnv
from maze.core.env.action_conversion import ActionConversionInterface
from maze.core.env.observation_conversion import ObservationConversionInterface

from .core_env import Cutting2DCoreEnvironment
from ..space_interfaces.dict_observation_conversion import ObservationConversion
from ..space_interfaces.dict_action_conversion import ActionConversion

class Cutting2DEnvironment(MazeEnv[Cutting2DCoreEnvironment]):
"""Maze environment for 2d cutting.

:param core_env: The underlying core environment.
:param action_conversion: A action conversion interfaces.
:param observation_conversion: An observation conversion interface.
"""

def __init__(self,
core_env: CoreEnv,
action_conversion: ActionConversionInterface,
observation_conversion: ObservationConversionInterface):

super().__init__(core_env=core_env,
action_conversion_dict={0: action_conversion},
observation_conversion_dict={0: observation_conversion})

def maze_env_factory(max_pieces_in_inventory: int, raw_piece_size: (int, int),
static_demand: (int, int)) -> Cutting2DEnvironment:

"""Convenience factory function that compiles a trainable maze environment.
(for argument details see: Cutting2DCoreEnvironment)
"""

init core environment
core_env = Cutting2DCoreEnvironment(max_pieces_in_inventory=max_pieces_in_

→˓inventory,
raw_piece_size=raw_piece_size,
static_demand=static_demand)

init maze environment including observation and action interfaces
action_conversion = ActionConversion(max_pieces_in_inventory=max_pieces_in_

→˓inventory)
observation_conversion = ObservationConversion(raw_piece_size=raw_piece_size,

max_pieces_in_inventory=max_pieces_
→˓in_inventory)

return Cutting2DEnvironment(core_env, action_conversion, observation_conversion)

18 Chapter 1. Getting Started | |

Maze

The MazeEnv is instantiated with the underlying CoreEnv and the two interfaces for MazeStates and MazeActions.
For convenience we also add a maze_env_factory to instantiate the MazeEnv from the original environment
parameter set. This will be useful in the next part of the tutorial where we will train an agent based on this environment.

ObservationConversionInterface

The ObservationConversionInterface converts CoreEnv MazeState objects into machine readable Gym-
style observations and defines the respective Gym observation space. In the present cases the observation is defined as
a dictionary with the following structure:

• inventory: 2d array representing all pieces currently in inventory

• inventory_size: count of pieces currently in inventory

• order: 2d vector representing the customer order (current demand)

Listing 10: space_interfaces/dict_observation_conversion.py

import numpy as np
from typing import Dict
from gym import spaces

from maze.core.annotations import override
from maze.core.env.observation_conversion import ObservationConversionInterface
from ..env.maze_state import Cutting2DMazeState

class ObservationConversion(ObservationConversionInterface):
"""Cutting 2d environment state to dictionary observation.

:param max_pieces_in_inventory: Size of the inventory. If inventory gets full,
→˓the oldest pieces get discarded.

:param raw_piece_size: Size of a fresh raw (= full-size) piece
"""

def __init__(self, raw_piece_size: (int, int), max_pieces_in_inventory: int):
self.max_pieces_in_inventory = max_pieces_in_inventory
self.raw_piece_size = raw_piece_size

@override(ObservationConversionInterface)
def maze_to_space(self, maze_state: Cutting2DMazeState) -> Dict[str, np.ndarray]:

"""Converts core environment state to a machine readable agent observation."""

Convert inventory to numpy array and stretch it to full size (filling with
→˓zeros)

inventory_state = maze_state.inventory
inventory_state += [(0, 0)] * (self.max_pieces_in_inventory - len(maze_state.

→˓inventory))

Compile dict space observation
return {'inventory': np.asarray(inventory_state, dtype=np.float32),

'inventory_size': np.asarray([len(maze_state.inventory)], dtype=np.
→˓float32),

'ordered_piece': np.asarray(maze_state.current_demand, dtype=np.
→˓float32)}

@override(ObservationConversionInterface)
def space_to_maze(self, observation: Dict[str, np.ndarray]) -> Cutting2DMazeState:

(continues on next page)

1.3. Maze - Step by Step 19

Maze

(continued from previous page)

"""Converts agent observation to core environment state (not required for
→˓this example)."""

raise NotImplementedError

@override(ObservationConversionInterface)
def space(self) -> spaces.Dict:

"""Return the Gym dict observation space based on the given params.

:return: Gym space object
- inventory: max_pieces_in_inventory x 2 (x/y-dimensions of pieces in

→˓inventory)
- inventory_size: scalar number of pieces in inventory
- ordered_piece: 2d vector holding x/y-dimension of customer ordered piece

"""
return spaces.Dict({

'inventory': spaces.Box(low=np.zeros((self.max_pieces_in_inventory, 2),
→˓dtype=np.float32),

high=np.vstack([[self.raw_piece_size[0] + 1, self.
→˓raw_piece_size[1] + 1]] *

self.max_pieces_in_inventory).
→˓astype(np.float32),

dtype=np.float32),
'inventory_size': spaces.Box(low=np.float32(0), high=self.max_pieces_in_

→˓inventory + 1,
shape=(1,), dtype=np.float32),

'ordered_piece': spaces.Box(low=np.float32(0), high=np.float32(max(self.
→˓raw_piece_size) + 1),

shape=(2,), dtype=np.float32)
})

ActionConversionInterface

The ActionConversionInterface converts agent actions into CoreEnv MazeAction objects and defines the
respective Gym action space. In the present cases the action is defined as a dictionary with the following structure:

• piece_idx: id of the inventory piece that should be used for cutting

• rotation: defines whether to rotate the piece for cutting or not

• order: defines the cutting order (xy vs. yx)

Listing 11: space_interfaces/dict_action_conversion.py

from typing import Dict
from gym import spaces
from maze.core.env.action_conversion import ActionConversionInterface

from ..env.maze_action import Cutting2DMazeAction
from ..env.maze_state import Cutting2DMazeState

class ActionConversion(ActionConversionInterface):
"""Converts agent actions to actual environment maze_actions.

:param max_pieces_in_inventory: Size of the inventory
"""

(continues on next page)

20 Chapter 1. Getting Started | |

Maze

(continued from previous page)

def __init__(self, max_pieces_in_inventory: int):
self.max_pieces_in_inventory = max_pieces_in_inventory

def space_to_maze(self, action: Dict[str, int], maze_state: Cutting2DMazeState) ->
→˓ Cutting2DMazeAction:

"""Converts agent dictionary action to environment MazeAction object."""
return Cutting2DMazeAction(piece_id=action["piece_idx"],

rotate=bool(action["cut_rotation"]),
reverse_cutting_order=bool(action["cut_order"]))

def maze_to_space(self, maze_action: Cutting2DMazeAction) -> Dict[str, int]:
"""Converts environment MazeAction object to agent dictionary action."""
return {"piece_idx": maze_action.piece_id,

"cut_rotation": int(maze_action.rotate),
"cut_order": int(maze_action.reverse_cutting_order)}

def space(self) -> spaces.Dict:
"""Returns Gym dict action space."""
return spaces.Dict({

"piece_idx": spaces.Discrete(self.max_pieces_in_inventory), # Which
→˓piece should be cut

"cut_rotation": spaces.Discrete(2), # Rotate: (yes / no)
"cut_order": spaces.Discrete(2) # Cutting order: (xy / yx)

})

Updating the CoreEnv

For the sake of completeness we also show two more minor modifications required in the CoreEnv, which are not
too important for this tutorial at the moment. In short, the StructuredEnv interface supports interaction patterns
beyond standard Gym environments to model for example hierarchical or multi-agent RL problems. We will get back
to this in our more advanced tutorials.

The code below defines that the current version of the environment requires only one actor (id 0) with a single policy
(id 0) that is never done.

Listing 12: env/core_env.py

class Cutting2DCoreEnvironment(CoreEnv):

...

def is_actor_done(self) -> bool:
"""Returns True if the just stepped actor is done, which is different to the

→˓done flag of the environment."""
return False

def actor_id(self) -> Tuple[Union[str, int], int]:
"""Returns the currently executed actor along with the policy id. The id is

→˓unique only with
respect to the policies (every policy has its own actor 0).
Note that identities of done actors can not be reused in the same rollout.

:return: The current actor, as tuple (policy id, actor number).
"""

(continues on next page)

1.3. Maze - Step by Step 21

Maze

(continued from previous page)

return 0, 0

...

Test Script

The following snippet will instantiate the environment and run it for 15 steps.

Note that (compared to the previous example) we are now:

• working with observations and actions instead of MazeStates and MazeActions

• able to sample actions from the action_space object

Listing 13: main.py

""" Test script CoreEnv """
from tutorials.tutorial_maze_env.part03_maze_env.env.maze_env import maze_env_factory

def main():
init maze environment including observation and action interfaces
env = maze_env_factory(max_pieces_in_inventory=10,

raw_piece_size=[100, 100],
static_demand=(30, 15))

reset environment
obs = env.reset()
run interaction loop
for i in range(15):

sample random action
action = env.action_space.sample()

take actual environment step
obs, reward, done, info = env.step(action)
print(f"reward {reward} | done {done} | info {info}")

if __name__ == "__main__":
""" main """
main()

reward -1 | done False | info {'msg': 'valid_cut'}
reward 0 | done False | info {'msg': 'valid_cut'}
reward 0 | done False | info {'msg': 'valid_cut'}
reward 0 | done False | info {'error': 'piece_id_out_of_bounds'}
reward 0 | done False | info {'error': 'piece_id_out_of_bounds'}
...

22 Chapter 1. Getting Started | |

Maze

1.3.5 Training the MazeEnv

The complete code for this part of the tutorial can be found here

file structure
- cutting_2d

- conf
- env

- tutorial_cutting_2d_basic.yaml
- model

- tutorial_cutting_2d_basic.yaml
- wrappers

- tutorial_cutting_2d_basic.yaml

Page Overview

• Hydra Configuration

• Training an Agent

Hydra Configuration

The entire Maze workflow is boosted by the Hydra configuration system. To be able to perform our first training run
via the Maze CLI we have to add a few more config files. Going into the very details of the config structure is for now
beyond the scope of this tutorial. However, we still provide some information on the parts relevant for this example.

The config file for the maze_env_factory looks as follows:

Listing 14: conf/env/tutorial_cutting_2d_basic.yaml

@package env
type: tutorials.tutorial_maze_env.part03_maze_env.env.maze_env.maze_env_factory

parametrizes the core environment
max_pieces_in_inventory: 200
raw_piece_size: [100, 100]
static_demand: [30, 15]

Additionally, we also provide a wrapper config but refer to Customizing Environments with Wrappers for details.

Listing 15: conf/wrappers/tutorial_cutting_2d_basic.yaml

@package wrappers

limits the maximum number of time steps of an episode
TimeLimitWrapper:
max_episode_steps: 200

flattens the dictionary observations to work with DenseLayers
PreProcessingWrapper:

pre_processor_mapping:
- observation: inventory
type: maze.preprocessors.FlattenPreProcessor
keep_original: false

(continues on next page)

1.3. Maze - Step by Step 23

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part03_maze_env

Maze

(continued from previous page)

config:
num_flatten_dims: 2

To learn more about the model config in conf/env_model/tutorial_cutting_2d_basic.yaml you can
visit the introduction on how to work with template models.

Training an Agent

Once the config is set up we are good to go to start our first training run (in the cmd below with the PPO algorithm):

maze-run -cn conf_train env=tutorial_cutting_2d_basic wrappers=tutorial_cutting_2d_
→˓basic \
model=tutorial_cutting_2d_basic algorithm=ppo

Running the trainer should print a command line output similar to the one shown below.

step|path |
→˓ value
=====|==|====================

12|train MultiStepActorCritic..time_epoch ······················|
→˓ 24.333

12|train MultiStepActorCritic..time_rollout ······················|
→˓ 0.754

12|train MultiStepActorCritic..learning_rate ······················|
→˓ 0.000

12|train MultiStepActorCritic..policy_loss 0 |
→˓ -0.016

12|train MultiStepActorCritic..policy_grad_norm 0 |
→˓ 0.015

12|train MultiStepActorCritic..policy_entropy 0 |
→˓ 0.686

12|train MultiStepActorCritic..critic_value 0 |
→˓ -56.659

12|train MultiStepActorCritic..critic_value_loss 0 |
→˓ 33.026

12|train MultiStepActorCritic..critic_grad_norm 0 |
→˓ 0.500

12|train MultiStepActorCritic..time_update ······················|
→˓ 1.205

12|train DiscreteActionEvents action substep_0/order |
→˓[len:8000, :0.5]

12|train DiscreteActionEvents action substep_0/piece_idx |
→˓[len:8000, :169.2]

12|train DiscreteActionEvents action substep_0/rotation |
→˓[len:8000, :1.0]

12|train BaseEnvEvents reward median_step_count |
→˓ 200.000

12|train BaseEnvEvents reward mean_step_count |
→˓ 200.000

12|train BaseEnvEvents reward total_step_count |
→˓ 96000.000

12|train BaseEnvEvents reward total_episode_count |
→˓ 480.000

12|train BaseEnvEvents reward episode_count |
→˓ 40.000

(continues on next page)

24 Chapter 1. Getting Started | |

Maze

(continued from previous page)

12|train BaseEnvEvents reward std |
→˓ 34.248

12|train BaseEnvEvents reward mean |
→˓ -186.450

12|train BaseEnvEvents reward min |
→˓ -259.000

12|train BaseEnvEvents reward max |
→˓ -130.000

To get a nicer view on these numbers we can also take a look at the stats with Tensorboard.

tensorboard --logdir outputs

You can view it with your browser at http://localhost:6006/.

For now we can only inspect standard metrics such as reward statistics or mean_step_counts per episode. Unfortu-
nately, this is not too informative with respect to the cutting problem we are currently addressing. In the next part we
will show how to make logging much more informative by introducing events and KPIs.

1.3. Maze - Step by Step 25

http://localhost:6006/

Maze

1.3.6 Adding Events and KPIs

The complete code for this part of the tutorial can be found here

file structure
- cutting_2d

- main.py # modified
- env

- core_env.py # modified
- inventory.py # modified
- maze_state.py
- maze_action.py
- renderer.py
- maze_env.py
- events.py # new
- kpi_calculator.py # new

- space_interfaces
- dict_action_conversion.py
- dict_observation_conversion.py

Page Overview

• Events

• KPI Calculator

• Updating CoreEnv and Inventory

• Test Script

Events

In the previous section we have trained the initial version of our cutting environment and already learned how we
can watch the training process with commandline and Tensorboard logging. However, watching only standard metrics
such as reward or episode step count is not always too informative with respect to the agents behaviour and the problem
at hand.

For example we might be interested in how often an agent selects an invalid cutting piece or specifies and invalid
cutting setting. To tackle this issue and to enable better inspection and logging tools we introduce an event system that
will be also reused in the reward customization section of this tutorial.

In particular, we introduce two event types related to the cutting process as well as inventory management. For each
event we can define which statistics are computed at which stage of the aggregation process (event, step, epoch) via
event decorators:

• @define_step_stats(len): Events 𝑒𝑖 are collected as a list of events {𝑒𝑖}. The len function counts
how often such an event occurred in the current environment step 𝑆𝑡𝑎𝑡𝑠𝑆𝑡𝑒𝑝 = |{𝑒𝑖}|.

• @define_episode_stats(sum): Defines how the 𝑆 step statistics should be aggregated to episode statis-
tics by simply summing them up: 𝑆𝑡𝑎𝑡𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒 =

∑︀𝑆
𝑆𝑡𝑎𝑡𝑠𝑆𝑡𝑒𝑝

• @define_epoch_stats(np.mean, output_name="mean_episode_total"): A training epoch
consists of N episodes. This decorator defines that epoch statistics should be the average of the contained
episodes: 𝑆𝑡𝑎𝑡𝑠𝐸𝑝𝑜𝑐ℎ = (

∑︀𝑁
𝑆𝑡𝑎𝑡𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒)/𝑁

Below we will see that theses statistics will now be considered by the logging system as InventoryEvents and Cut-
tingEvents. For more details on event decorators and the underlying working principles we refer to the dedicated

26 Chapter 1. Getting Started | |

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part04_events

Maze

section on event and KPI logging.

Listing 16: env/events.py

from abc import ABC

import numpy as np
from maze.core.log_stats.event_decorators import define_step_stats, define_episode_
→˓stats, define_epoch_stats

class CuttingEvents(ABC):
"""Events related to the cutting process."""

@define_epoch_stats(np.mean, output_name="mean_episode_total")
@define_episode_stats(sum)
@define_step_stats(len)
def invalid_piece_selected(self):

"""An invalid piece is selected for cutting."""

@define_epoch_stats(np.mean, output_name="mean_episode_total")
@define_episode_stats(sum)
@define_step_stats(len)
def valid_cut(self, current_demand: (int, int), piece_to_cut: (int, int), raw_

→˓piece_size: (int, int),
cutting_area: float):

"""A valid cut was performed."""

@define_epoch_stats(np.mean, output_name="mean_episode_total")
@define_episode_stats(sum)
@define_step_stats(len)
def invalid_cut(self, current_demand: (int, int), piece_to_cut: (int, int), raw_

→˓piece_size: (int, int)):
"""Invalid cutting parameters have been specified."""

class InventoryEvents(ABC):
"""Events related to inventory management."""

@define_epoch_stats(np.mean, output_name="mean_episode_total")
@define_episode_stats(sum)
@define_step_stats(len)
def piece_discarded(self, piece: (int, int)):

"""The inventory is full and a piece has been discarded."""

@define_epoch_stats(np.mean, input_name="step_mean", output_name="step_mean")
@define_epoch_stats(max, input_name="step_max", output_name="step_max")
@define_episode_stats(np.mean, output_name="step_mean")
@define_episode_stats(max, output_name="step_max")
@define_step_stats(None)
def pieces_in_inventory(self, value: int):

"""Reports the count of pieces currently in the inventory."""

@define_epoch_stats(np.mean, output_name="mean_episode_total")
@define_episode_stats(sum)
@define_step_stats(len)
def piece_replenished(self):

"""A new raw cutting piece has been replenished."""

1.3. Maze - Step by Step 27

Maze

KPI Calculator

The goal of the cutting 2d environment is to learn a cutting policy that requires as little as possible raw inventory pieces
for fulfilling upcoming customer demand. This metric is exactly what we define as the KPI to watch and optimize,
e.g. the raw_piece_usage_per_step.

As you will see below the logging system considers such KPIs and prints statistics of these along with the remaining
BaseEnvEvents.

Listing 17: env/kpi_calculator.py

from typing import Dict

from maze.core.env.maze_state import MazeStateType
from maze.core.log_events.kpi_calculator import KpiCalculator
from maze.core.log_events.episode_event_log import EpisodeEventLog
from .events import InventoryEvents

class Cutting2dKpiCalculator(KpiCalculator):
"""KPIs for 2D cutting environment.
The following KPIs are available: Raw pieces used per step
"""

def calculate_kpis(self, episode_event_log: EpisodeEventLog, last_maze_state:
→˓MazeStateType) -> Dict[str, float]:

"""Calculates the KPIs at the end of episode."""

get overall step count of episode
step_count = len(episode_event_log.step_event_logs)
count raw inventory piece replenishment events
raw_piece_usage = 0
for _ in episode_event_log.query_events(InventoryEvents.piece_replenished):

raw_piece_usage += 1
compute step normalized raw piece usage
return {"raw_piece_usage_per_step": raw_piece_usage / step_count}

Updating CoreEnv and Inventory

There are also a few changes we have to make in the CoreEnvironment:

• initialize the Publisher-Subscriber and the KPI Calculator

• creating the event topics for cutting and inventory events when setting up the environment

• instead of writing relevant events into the info dictionary in the step function we can now trigger the respective
events.

Listing 18: env/core_env.py

...
from maze.core.events.pubsub import Pubsub
from .events import CuttingEvents, InventoryEvents
from .kpi_calculator import Cutting2dKpiCalculator

class Cutting2DCoreEnvironment(CoreEnv):
(continues on next page)

28 Chapter 1. Getting Started | |

Maze

(continued from previous page)

def __init__(self, max_pieces_in_inventory: int, raw_piece_size: (int, int),
→˓static_demand: (int, int)):

super().__init__()

...

init pubsub for event to reward routing
self.pubsub = Pubsub(self.context.event_service)

KPIs calculation
self.kpi_calculator = Cutting2dKpiCalculator()

def _setup_env(self):
"""Setup environment."""
inventory_events = self.pubsub.create_event_topic(InventoryEvents)
self.inventory = Inventory(self.max_pieces_in_inventory, self.raw_piece_size,

→˓inventory_events)
self.inventory.replenish_piece()

self.cutting_events = self.pubsub.create_event_topic(CuttingEvents)

def step(self, maze_action: Cutting2DMazeAction) -> Tuple[Cutting2DMazeState, np.
→˓array, bool, Dict[Any, Any]]:

"""Summary of the step (simplified, not necessarily respecting the actual
→˓order in the code):

1. Check if the selected piece to cut is valid (i.e. in inventory, large
→˓enough etc.)

2. Attempt the cutting
3. Replenish a fresh piece if needed and return an appropriate reward

:param maze_action: Cutting MazeAction to take.
:return: maze_state, reward, done, info
"""

info, reward = {}, 0
replenishment_needed = False

check if valid piece id was selected
if maze_action.piece_id >= self.inventory.size():

self.cutting_events.invalid_piece_selected()
perform cutting
else:

piece_to_cut = self.inventory.pieces[maze_action.piece_id]

attempt the cut
if self.inventory.cut(maze_action, self.current_demand):

self.cutting_events.valid_cut(current_demand=self.current_demand,
→˓piece_to_cut=piece_to_cut,

raw_piece_size=self.raw_piece_size)
replenishment_needed = piece_to_cut == self.raw_piece_size

else:
assign a negative reward for invalid cutting attempts
self.cutting_events.invalid_cut(current_demand=self.current_demand,

→˓piece_to_cut=piece_to_cut,
raw_piece_size=self.raw_piece_size)

reward = -2
(continues on next page)

1.3. Maze - Step by Step 29

Maze

(continued from previous page)

check if replenishment is required
if replenishment_needed:

self.inventory.replenish_piece()
assign negative reward if a piece has to be replenished
reward = -1

step execution finished, write step statistics
self.inventory.log_step_statistics()

compile env state
maze_state = self.get_maze_state()

return maze_state, reward, False, info

def get_kpi_calculator(self) -> Cutting2dKpiCalculator:
"""KPIs are supported."""
return self.kpi_calculator

For the inventory we proceed analogously and also trigger the respective events.

Listing 19: env/inventory.py

...
from .events import InventoryEvents

class Inventory:
"""Holds the inventory of 2D pieces and performs cutting.
:param max_pieces_in_inventory: Size of the inventory. If full, the oldest pieces

→˓get discarded.
:param raw_piece_size: Size of a fresh raw (= full-size) piece.
:param inventory_events: Inventory event dispatch proxy.
"""

def __init__(self, max_pieces_in_inventory: int, raw_piece_size: (int, int),
inventory_events: InventoryEvents):

...

self.inventory_events = inventory_events

def store_piece(self, piece: (int, int)) -> None:
"""Store the given piece.
:param piece: Piece to store.
"""
If we would run out of storage space, discard the oldest piece first
if self.is_full():

self.pieces.pop(0)
self.inventory_events.piece_discarded(piece=piece)

self.pieces.append(piece)

def replenish_piece(self) -> None:
"""Add a fresh raw piece to inventory."""
self.store_piece(self.raw_piece_size)
self.inventory_events.piece_replenished()

(continues on next page)

30 Chapter 1. Getting Started | |

Maze

(continued from previous page)

def log_step_statistics(self):
"""Log inventory statistics once per step"""
self.inventory_events.pieces_in_inventory(self.size())

Test Script

The following snippet will instantiate the environment and run it for 15 steps.

To get access to event and KPI logging we need to wrap the environment with the LogStatsWrapper. To simplify
the statistics logging setup we rely on the SimpleStatsLoggingSetup helper class.

Listing 20: main.py

""" Test script CoreEnv """
from maze.utils.log_stats_utils import SimpleStatsLoggingSetup
from maze.core.wrappers.log_stats_wrapper import LogStatsWrapper
from tutorials.tutorial_maze_env.part04_events.env.maze_env import maze_env_factory

def main():
init maze environment including observation and action interfaces
env = maze_env_factory(max_pieces_in_inventory=200,

raw_piece_size=[100, 100],
static_demand=(30, 15))

wrap environment with logging wrapper
env = LogStatsWrapper(env, logging_prefix="main")

register a console writer and connect the writer to the statistics logging
→˓system

with SimpleStatsLoggingSetup(env):
reset environment
obs = env.reset()
run interaction loop
for i in range(15):

sample random action
action = env.action_space.sample()

take actual environment step
obs, reward, done, info = env.step(action)

if __name__ == "__main__":
""" main """
main()

When running the script you will get an output as shown below. Note that statistics of both, events and KPIs, are
printed along with default reward or action statistics.

step|path |
→˓ value
=====|==|====================

1|main DiscreteActionEvents action substep_0/order |
→˓[len:15, :0.5]

1|main DiscreteActionEvents action substep_0/piece_idx |
→˓[len:15, :82.3]

(continues on next page)

1.3. Maze - Step by Step 31

Maze

(continued from previous page)

1|main DiscreteActionEvents action substep_0/rotation |
→˓[len:15, :0.7]

1|main BaseEnvEvents reward median_step_count |
→˓ 15.000

1|main BaseEnvEvents reward mean_step_count |
→˓ 15.000

1|main BaseEnvEvents reward total_step_count |
→˓ 15.000

1|main BaseEnvEvents reward total_episode_count |
→˓ 1.000

1|main BaseEnvEvents reward episode_count |
→˓ 1.000

1|main BaseEnvEvents reward std |
→˓ 0.000

1|main BaseEnvEvents reward mean |
→˓ -29.000

1|main BaseEnvEvents reward min |
→˓ -29.000

1|main BaseEnvEvents reward max |
→˓ -29.000

1|main InventoryEvents piece_replenished mean_episode_total |
→˓ 3.000

1|main InventoryEvents pieces_in_inventory step_max |
→˓ 200.000

1|main InventoryEvents pieces_in_inventory step_mean |
→˓ 200.000

1|main CuttingEvents invalid_cut mean_episode_total |
→˓ 14.000

1|main InventoryEvents piece_discarded mean_episode_total |
→˓ 2.000

1|main CuttingEvents valid_cut mean_episode_total |
→˓ 1.000

1|main BaseEnvEvents kpi max/raw_piece_usage_..|
→˓ 0.000

1|main BaseEnvEvents kpi min/raw_piece_usage_..|
→˓ 0.000

1|main BaseEnvEvents kpi std/raw_piece_usage_..|
→˓ 0.000

1|main BaseEnvEvents kpi mean/raw_piece_usage..|
→˓ 0.000

1.3.7 Training with Events and KPIs

The complete code for this part of the tutorial can be found here

file structure
- cutting_2d

- conf
- env

- tutorial_cutting_2d_events.yaml
- model

- tutorial_cutting_2d_events.yaml
- wrappers

- tutorial_cutting_2d_events.yaml

32 Chapter 1. Getting Started | |

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part04_events

Maze

Page Overview

• Hydra Configuration

• Training an Agent

Hydra Configuration

The entire structure of this example is identical to the one on training the MazeEnv. Everything regarding the event
systems was already changed in the section on adding events and KPIs and the trainers will consider these changes
implicitly.

Training an Agent

To retrain the agent on the environment extended with event and KPI logging, run:

maze-run -cn conf_train env=tutorial_cutting_2d_events wrappers=tutorial_cutting_2d_
→˓events \
model=tutorial_cutting_2d_events algorithm=ppo

Running the trainer should print an extended command line output similar to the one shown below. In addition to base
events we now also get a statistics log of CuttingEvents, InventoryEvents and KPIs.

step|path |
→˓ value
=====|==|====================

6|train MultiStepActorCritic..time_epoch ······················|
→˓ 24.548

6|train MultiStepActorCritic..time_rollout ······················|
→˓ 0.762

6|train MultiStepActorCritic..learning_rate ······················|
→˓ 0.000

6|train MultiStepActorCritic..policy_loss 0 |
→˓ -0.020

6|train MultiStepActorCritic..policy_grad_norm 0 |
→˓ 0.013

6|train MultiStepActorCritic..policy_entropy 0 |
→˓ 0.760

6|train MultiStepActorCritic..critic_value 0 |
→˓ -49.238

6|train MultiStepActorCritic..critic_value_loss 0 |
→˓ 50.175

6|train MultiStepActorCritic..critic_grad_norm 0 |
→˓ 0.500

6|train MultiStepActorCritic..time_update ······················|
→˓ 1.210

6|train DiscreteActionEvents action substep_0/order |
→˓[len:8000, :0.0]

6|train DiscreteActionEvents action substep_0/piece_idx |
→˓[len:8000, :174.2]

6|train DiscreteActionEvents action substep_0/rotation |
→˓[len:8000, :1.0]

6|train BaseEnvEvents reward median_step_count |
→˓ 200.000

(continues on next page)

1.3. Maze - Step by Step 33

Maze

(continued from previous page)

6|train BaseEnvEvents reward mean_step_count |
→˓ 200.000

6|train BaseEnvEvents reward total_step_count |
→˓ 48000.000

6|train BaseEnvEvents reward total_episode_count |
→˓ 240.000

6|train BaseEnvEvents reward episode_count |
→˓ 40.000

6|train BaseEnvEvents reward std |
→˓ 38.427

6|train BaseEnvEvents reward mean |
→˓ -182.175

6|train BaseEnvEvents reward min |
→˓ -323.000

6|train BaseEnvEvents reward max |
→˓ -119.000

6|train InventoryEvents piece_replenished mean_episode_total |
→˓ 15.325

6|train InventoryEvents piece_discarded mean_episode_total |
→˓ 67.400

6|train InventoryEvents pieces_in_inventory step_max |
→˓ 200.000

6|train InventoryEvents pieces_in_inventory step_mean |
→˓ 200.000

6|train CuttingEvents valid_cut mean_episode_total |
→˓ 116.075

6|train CuttingEvents invalid_cut mean_episode_total |
→˓ 83.925

6|train BaseEnvEvents kpi max/raw_piece_usage_..|
→˓ 0.135

6|train BaseEnvEvents kpi min/raw_piece_usage_..|
→˓ 0.020

6|train BaseEnvEvents kpi std/raw_piece_usage_..|
→˓ 0.028

6|train BaseEnvEvents kpi mean/raw_piece_usage..|
→˓ 0.077

Of course these changes are also reflected in the Tensorboard log which you can again view with your browser at
http://localhost:6006/.

tensorboard --logdir outputs

As you can see we now have the two additional sections train_CuttingEvents and train_InventoryEvents available.

34 Chapter 1. Getting Started | |

http://localhost:6006/

Maze

A closer look at these events reveals that the agent actually starts to learn something meaning full as the number of
invalid cuts decreases which of course implies that the number of valid cuts increases and we are able to full fill the
current customer demand.

1.3. Maze - Step by Step 35

Maze

1.3.8 Adding Reward Customization

The complete code for this part of the tutorial can be found here

file structure
- cutting_2d

- main.py # modified
- env

- core_env.py # modified
- inventory.py
- maze_state.py
- maze_action.py
- renderer.py
- maze_env.py # modified
- events.py
- kpi_calculator.py

- space_interfaces
- dict_action_conversion.py
- dict_observation_conversion.py

- reward
- default_reward.py # new

Page Overview

• Reward

• Updating the Core- and MazeEnv

• Where to Go Next

Reward

In this part of the tutorial we introduce how to reuse the event system for reward shaping and customization via the
RewardAggregatorInterface.

The DefaultRewardAggregator does the following:

• Requests the required event interfaces via get_interfaces (here CuttingEvents and InventoryEvents).

• Collects rewards and penalties according to relevant events.

• Aggregates the individual event rewards and penalties to a single scalar reward signal.

Note that this reward aggregator can have any form as long as it provides a scalar reward function that can be used for
training. This gives a lot of flexibility in shaping rewards without the need to change the actual implementation of the
environment (more on this topic).

Listing 21: reward/default_reward.py

from abc import abstractmethod
from typing import List

from maze.core.env.reward import RewardAggregatorInterface

from ..env.events import CuttingEvents, InventoryEvents

(continues on next page)

36 Chapter 1. Getting Started | |

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part05_reward

Maze

(continued from previous page)

class CuttingRewardAggregator(RewardAggregatorInterface):
"""Interface for cutting reward aggregators."""

@abstractmethod
def collect_rewards(self) -> List[float]:

"""Assign rewards and penalties according to respective events.
:return: List of individual event rewards.
"""

class DefaultRewardAggregator(CuttingRewardAggregator):
"""Default reward scheme for the 2D cutting env.

:param invalid_action_penalty: Negative reward assigned for an invalid cutting
→˓specification.

:param raw_piece_usage_penalty: Negative reward assigned for starting a new raw
→˓inventory piece.

"""

def __init__(self, invalid_action_penalty: float, raw_piece_usage_penalty: float):
super().__init__()
self.invalid_action_penalty = invalid_action_penalty
self.raw_piece_usage_penalty = raw_piece_usage_penalty

def get_interfaces(self):
"""Specification of the event interfaces this subscriber wants to receive

→˓events from.
Every subscriber must implement this configuration method.
:return: A list of interface classes"""
return [CuttingEvents, InventoryEvents]

def collect_rewards(self) -> List[float]:
"""Assign rewards and penalties according to respective events.
:return: List of individual event rewards.
"""

rewards: List[float] = []

penalty for starting a new raw inventory piece
for _ in self.query_events(InventoryEvents.piece_replenished):

rewards.append(self.raw_piece_usage_penalty)

penalty for selecting an invalid piece for cutting
for _ in self.query_events(CuttingEvents.invalid_piece_selected):

rewards.append(self.invalid_action_penalty)

penalty for specifying invalid cutting parameters
for _ in self.query_events(CuttingEvents.invalid_cut):

rewards.append(self.invalid_action_penalty)

return rewards

@classmethod
def to_scalar_reward(cls, reward: List[float]) -> float:

"""Aggregate sub-rewards to scalar reward.

This method is useful for example in a multi-agent setting
(continues on next page)

1.3. Maze - Step by Step 37

Maze

(continued from previous page)

where we could sum over multiple actors to assign a joint reward.

:param: reward: The aggregated reward (e.g. per-agent reward for multi-agent
→˓RL settings).

:return: The scalar reward returned by the environment.
"""
return sum(reward)

Updating the Core- and MazeEnv

We also have to make a few modifications in the CoreEnv:

• Initialize the reward aggregator in the constructor.

• Instead of accumulating reward in the if-else branches of the step function we summarize it only once at the
end. The conversion to a scalar is performed in the step function of the MazeEnv .

Listing 22: env/core_env.py

...
from ..reward.default_reward import CuttingRewardAggregator

class Cutting2DCoreEnvironment(CoreEnv):
"""Environment for cutting 2D pieces based on the customer demand. Works as

→˓follows:
...
:param reward_aggregator: Either an instantiated aggregator or a configuration

→˓dictionary.
"""

def __init__(self, max_pieces_in_inventory: int, raw_piece_size: (int, int),
→˓static_demand: (int, int),

reward_aggregator: CuttingRewardAggregator):
super().__init__()

...

init reward and register it with pubsub
self.reward_aggregator = reward_aggregator
self.pubsub.register_subscriber(self.reward_aggregator)

def step(self, maze_action: Cutting2DMazeAction) -> Tuple[Cutting2DMazeState, np.
→˓array, bool, Dict[Any, Any]]:

"""Summary of the step (simplified, not necessarily respecting the actual
→˓order in the code):

1. Check if the selected piece to cut is valid (i.e. in inventory, large
→˓enough etc.)

2. Attempt the cutting
3. Replenish a fresh piece if needed and return an appropriate reward

:param maze_action: Cutting maze_action to take.
:return: state, reward, done, info
"""

info = {}
(continues on next page)

38 Chapter 1. Getting Started | |

Maze

(continued from previous page)

replenishment_needed = False

check if valid piece id was selected
if maze_action.piece_id >= self.inventory.size():

self.cutting_events.invalid_piece_selected()
perform cutting
else:

piece_to_cut = self.inventory.pieces[maze_action.piece_id]

attempt the cut
if self.inventory.cut(maze_action, self.current_demand):

self.cutting_events.valid_cut(current_demand=self.current_demand,
→˓piece_to_cut=piece_to_cut,

raw_piece_size=self.raw_piece_size)
replenishment_needed = piece_to_cut == self.raw_piece_size

else:
assign a negative reward for invalid cutting attempts
self.cutting_events.invalid_cut(current_demand=self.current_demand,

→˓piece_to_cut=piece_to_cut,
raw_piece_size=self.raw_piece_size)

check if replenishment is required
if replenishment_needed:

self.inventory.replenish_piece()
assign negative reward if a piece has to be replenished

step execution finished, write step statistics
self.inventory.log_step_statistics()

aggregate reward from events
reward = self.reward_aggregator.collect_rewards()

compile env state
maze_state = self.get_maze_state()

return maze_state, reward, False, info

Finally, we update the maze_env_factory function for instantiating the trainable MazeEnv and we are all set up
for training with event based, customized rewards.

Listing 23: env/maze_env.py

...

def maze_env_factory(max_pieces_in_inventory: int, raw_piece_size: (int, int),
static_demand: (int, int)) -> Cutting2DEnvironment:

"""Convenience factory function that compiles a trainable maze environment.
(for argument details see: Cutting2DCoreEnvironment)
"""

init reward aggregator
reward_aggregator = DefaultRewardAggregator(invalid_action_penalty=-2, raw_piece_

→˓usage_penalty=-1)

init core environment

(continues on next page)

1.3. Maze - Step by Step 39

Maze

(continued from previous page)

core_env = Cutting2DCoreEnvironment(max_pieces_in_inventory=max_pieces_in_
→˓inventory,

raw_piece_size=raw_piece_size,
static_demand=static_demand,
reward_aggregator=reward_aggregator)

init maze environment including observation and action interfaces
action_conversion = ActionConversion(max_pieces_in_inventory=max_pieces_in_

→˓inventory)
observation_conversion = ObservationConversion(raw_piece_size=raw_piece_size,

max_pieces_in_inventory=max_pieces_
→˓in_inventory)

return Cutting2DEnvironment(core_env, action_conversion, observation_conversion)

Where to Go Next

As the reward is implemented via a reward aggregator that is methodologically identical to the initial version there is
no need to retain the model for now. However, we highly recommend to proceed with the more advanced tutorial on
Structured Environments and Action Masking.

1.4 API Documentation

This page provides an overview of the Maze API documentation

1.4.1 Environment Interfaces

This page contains the reference documentation for environment interfaces.

maze.core.env

Environment interfaces:

BaseEnv Interface definition for reinforcement learning environ-
ments defining the minimum required functionality for
being considered an environment.

StructuredEnv Interface for environments with sub-step structure,
which is generally enough to cover multi-step, hierar-
chical and multi-agent environments.

CoreEnv Interface definition for core environments forming the
basis for actual RL trainable environments.

StructuredEnvSpacesMixin This interface complements the StructuredEnv by action
and observation spaces.

MazeEnv Base class for (gym style) environments wrapping a
core environment and defining state and execution in-
terfaces.

RenderEnvMixin Interface for rendering functionality in environments
(compatible with gym env).

continues on next page

40 Chapter 1. Getting Started | |

Maze

Table 1 – continued from previous page
RecordableEnvMixin This interface provides a standard way of exposing in-

ternal MazeState and MazeAction objects for trajectory
data recording.

SerializableEnvMixin This interface provides a standard way of exposing en-
vironment components whose state should be serialized
together with the environment state object when for ex-
ample recording trajectory data.

TimeEnvMixin This interface provides a standard way of exposing en-
vironment time to external components and wrappers.

EventEnvMixin This interface provides a standard way of attaching en-
vironment events to the log statistics system.

SimulatedEnvMixin Environment interface for simulated environments.

BaseEnv

class maze.core.env.base_env.BaseEnv
Interface definition for reinforcement learning environments defining the minimum required functionality for
being considered an environment.

abstract close()→ None
Performs any necessary cleanup.

abstract reset()→ Any
Resets the environment and returns the initial state.

Returns the initial state after resetting.

abstract seed(seed: Any)→ None
Sets the seed for this environment.

Commonly an integer is sufficient to seed the random number generator(s), but more expressive env-
specific seed structured are also supported.

Param seed: the seed integer initializing the random number generator or an env-specific seed
structure.

abstract step(action: Any)→ Tuple[Any, Any, bool, Dict[Any, Any]]
Environment step function.

Parameters action – the selected action to take.

Returns state, reward, done, info

StructuredEnv

class maze.core.env.structured_env.StructuredEnv
Interface for environments with sub-step structure, which is generally enough to cover multi-step, hierarchical
and multi-agent environments.

This environment can continuously create and destroy a previously unknown, unlimited number of actors during
the course of an episode. Every actor is associated with one of the available policies.

The lifecycle of the environment is decoupled from the lifecycle of the actors. The interaction loop should
continue, until the environment as a whole is set to done, which is returned as usual by the step() function.
Individual actors might end earlier, which can be queried by the is_actor_done() method.

Pseudo-code of the interaction loop:

1.4. API Documentation 41

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

start a new episode observation = env.reset()

while not done: # find out which actor is next to act (dictated by the env) sub_step_key, actor_id =
env.actor_id()

obtain the next action from the policy action = sample_from_policy(observation, sub_step_key, actor_id)

step the env observation, reward, done, info = env.step(action)

optionally use is_actor_done() to find out if the actor was terminated (relevant during training)

abstract actor_id()→ Tuple[Union[str, int], int]
Returns the current sub step key along with the currently executed actor.

The env must decide the actor in reset() and step(). In between these calls the return is constant per
convention and actor_id() can be called arbitrarily.

Notes: * The id is unique only with respect to the sub step (every sub step may have its own actor 0). *
Identities of done actors can not be reused in the same rollout.

Returns The current actor, as tuple (sub step key, actor number).

abstract is_actor_done()→ bool
Returns True if the just stepped actor is done, which is different to the done flag of the environment.

Like for actor_id(), the env updates this flag in reset() and step().

Returns True if the actor is done.

CoreEnv

class maze.core.env.core_env.CoreEnv
Interface definition for core environments forming the basis for actual RL trainable environments.

abstract actor_id()→ Tuple[Union[str, int], int]
Returns the currently executed actor along with the policy id. The id is unique only with respect to the
policies (every policy has its own actor 0).

Note that identities of done actors can not be reused in the same rollout.

Returns The current actor, as tuple (policy id, actor number).

abstract close()→ None
Performs any necessary cleanup.

get_kpi_calculator()→ Optional[maze.core.log_events.kpi_calculator.KpiCalculator]
By default, Core Envs do not have to support KPIs.

abstract get_maze_state()→ Any
Return current state of the environment.

:return The same state as returned by reset().

abstract get_renderer()→ maze.core.rendering.renderer.Renderer
Return renderer instance that can be used to render the env.

:return Renderer instance

abstract get_serializable_components()→ Dict[str, Any]
List components that should be serialized as part of trajectory data.

get_step_events()→ Iterable[maze.core.events.event_record.EventRecord]
Get all events recorded in the current step from the EventService.

42 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

:return An iterable of the recorded events.

abstract is_actor_done()→ bool
Returns True if the just stepped actor is done, which is different to the done flag of the environment.

Returns True if the actor is done.

abstract reset()→ Any
Reset the environment and return initial state.

Returns The initial state after resetting.

abstract seed(seed: int)→ None
Sets the seed for this environment’s random number generator(s).

Param seed: the seed integer initializing the random number generator.

abstract step(maze_action: Any) → Tuple[Any, Union[float, numpy.ndarray, Any], bool,
Dict[Any, Any]]

Environment step function.

Parameters maze_action – Environment MazeAction to take.

Returns state, reward, done, info

StructuredEnvSpacesMixin

class maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin
This interface complements the StructuredEnv by action and observation spaces.

StructuredEnv defines the logic and is usually implemented in the core env. In order to make it a complete,
trainable env, the space definitions from this class are needed.

abstract property action_space
The currently active gym action space.

abstract property action_spaces_dict
A dictionary of gym action spaces, with policy IDs as keys.

abstract property observation_space
The currently active gym observation space.

abstract property observation_spaces_dict
A dictionary of gym observation spaces, with policy IDs as keys.

MazeEnv

class maze.core.env.maze_env.MazeEnv(*args, **kwds)
Base class for (gym style) environments wrapping a core environment and defining state and execution in-
terfaces. The aim of this class is to provide reusable functionality across different gym environments. This
functionality comprises for example the reset-function, the step-function or the render-function.

Parameters

• core_env – Core environment.

• action_conversion_dict – A dictionary with action conversion interface implemen-
tation and policy names as keys.

• observation_conversion_dict – A dictionary with observation conversion inter-
face implementation and policy names as keys.

1.4. API Documentation 43

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

property action_conversion
Return the action conversion mapping for the current policy.

action_conversion_dict
The action conversion mapping used by this env.

property action_space
Keep this env compatible with the gym interface by returning the action space of the current policy.

property action_spaces_dict
Policy action spaces as dict.

actor_id()→ Tuple[Union[str, int], int]
forward call to self.core_env

close()→ None
forward call to self.core_env

core_env
wrapped CoreEnv

get_env_time()→ int
Return ID of the current core env step as env time.

get_episode_id()→ str
Return the ID of current episode (the ID changes on env reset).

get_kpi_calculator()→ Optional[maze.core.log_events.kpi_calculator.KpiCalculator]
forward call to self.core_env

get_maze_action()→ Any
Return last MazeAction object for trajectory recording.

get_maze_state()→ Any
Return current State object for the core env for trajectory recording.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

Convert MazeState and MazeAction back into observations and actions using the space conversion inter-
faces.

Parameters

• maze_state – State of the environment

• maze_action – MazeAction (the one following the state given as the first param)

• first_step_in_episode – True if this is the first step in the episode.

Returns observation and action dictionaries (keys are substep_ids)

get_renderer()→ maze.core.rendering.renderer.Renderer
Return the renderer exposed by the underlying core env.

get_step_events()→ Iterable[maze.core.events.event_record.EventRecord]
forward call to self.core_env

is_actor_done()→ bool
forward call to self.core_env

maze_env
direct access to the maze env (useful to bypass the wrapper hierarchy)

44 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

metadata
Only there to be compatible with gym.core.Env

property observation_conversion
Return the state to observation mapping for the current policy.

observation_conversion_dict
The observation conversion mapping used by this env.

property observation_space
Keep this env compatible with the gym interface by returning the observation space of the current policy.

property observation_spaces_dict
Policy observation spaces as dict.

reset()→ Any
Resets the environment and returns the initial observation.

Returns the initial observation after resetting.

reward_range
A tuple (reward min value, reward max value) to be compatible with gym.core.Env

seed(seed: Any)→ None
forward call to self.core_env

spec
Only there to be compatible with gym.core.Env

step(action: Any)→ Tuple[Any, float, bool, Dict[Any, Any]]
Take environment step (see CoreEnv.step for details).

Parameters action – the action the agent wants to take.

Returns observation, reward, done, info

RenderEnvMixin

class maze.core.env.render_env_mixin.RenderEnvMixin
Interface for rendering functionality in environments (compatible with gym env).

Intended to be combined with :obj:’~maze.core.env.base_env.BaseEnv` and potentially other environment inter-
faces by multiple inheritance. e.g. class MyEnv(BaseEnv, RenderEnvMixin).

abstract render(mode: str = 'human')→ None
Render current state of the environment.

Param mode: the render mode.

RecordableEnvMixin

class maze.core.env.recordable_env_mixin.RecordableEnvMixin
This interface provides a standard way of exposing internal MazeState and MazeAction objects for trajectory
data recording.

abstract get_episode_id()→ str
Get ID of the current episode. Usually a UUID converted to a string, but can be a custom string as well.

Returns Episode ID string

1.4. API Documentation 45

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

abstract get_maze_action()→ Any
Return the last MazeAction taken in the environment

Returns Last MazeAction object.

abstract get_maze_state()→ Any
Return current state of the environment.

Returns Current environment state object.

abstract get_renderer()→ maze.core.rendering.renderer.Renderer
Return renderer that can be used to render the recorded trajectory data.

Returns Renderer instance.

SerializableEnvMixin

class maze.core.env.serializable_env_mixin.SerializableEnvMixin
This interface provides a standard way of exposing environment components whose state should be serialized
together with the environment state object when for example recording trajectory data.

Implement this interface if there are additional components in the env besides state that should be serialized.

abstract get_serializable_components()→ Dict[str, Any]
Return all modules that should be serialized as part of the env besides state.

Important notes:

• All returned modules should support serialization using pickle. For most objects, this is possible
out-of-the-box without any special changes. However, there are some notable exceptions like
event interfaces – if any of the modules (or their attributes) keeps reference to an abstract object
like events interface, the __getstate__ method will need to be overriden to exclude these from
pickling.

Returns Dict in the format of { “serializable_module_name”: serializable_module }

TimeEnvMixin

class maze.core.env.time_env_mixin.TimeEnvMixin
This interface provides a standard way of exposing environment time to external components and wrappers. e.g.
for event logging.

abstract get_env_time()→ int

Returns Internal environment time represented as integer.

EventEnvMixin

class maze.core.env.event_env_mixin.EventEnvMixin
This interface provides a standard way of attaching environment events to the log statistics system.

Implement this interface in the environment to activate the statistics support.

abstract get_kpi_calculator()→ Optional[maze.core.log_events.kpi_calculator.KpiCalculator]
If available, return an instance of a KPI calculator that can be used to calculate KPIs from events at the end
of episode.

:return KPI calculator or None if KPIs are not supported in this env.

46 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

abstract get_step_events()→ Iterable[maze.core.events.event_record.EventRecord]
Retrieve all recorded events of the current environment step.

SimulatedEnvMixin

class maze.core.env.simulated_env_mixin.SimulatedEnvMixin
Environment interface for simulated environments.

The main addition to StructuredEnv is the clone method, which resets the simulation to the given env state. This
interface is used by Monte Carlo Tree Search.

abstract clone_from(maze_state: Any)→ None
Clone an environment by resetting the simulation to its current state.

step_without_observation(action: Dict[str, Union[int, numpy.ndarray]]) → Tuple[Any, bool,
Dict[Any, Any]]

Environment step function that does not return any observation.

This method can be significantly faster than the full step function in cases with expensive state to observa-
tion mappings.

Parameters action – the selected action to take.

Returns reward, done, info

Interfaces for additional components:

ObservationConversionInterface Interface specifying the conversion of abstract environ-
ment state to the gym-compatible observation.

ActionConversionInterface Interface specifying the conversion of agent actions to
actual environment MazeActions.

MazeStateType Internal indicator of special typing constructs.
MazeActionType Internal indicator of special typing constructs.
RewardAggregatorInterface Event aggregation object for reward customization and

shaping.
EnvironmentContext This class keeps track of services that can be employed

by all objects of the agent-environment loop.

ObservationConversionInterface

class maze.core.env.observation_conversion.ObservationConversionInterface
Interface specifying the conversion of abstract environment state to the gym-compatible observation.

abstract maze_to_space(maze_state: Any)→ Dict[str, numpy.ndarray]
Converts core environment state to a machine readable agent observation.

space()→ gym.spaces.Dict
Returns respective Gym observation space.

space_to_maze(observation: Dict[str, numpy.ndarray])→ Any
Converts agent observation to core environment state. (This is most like not possible for most observation
observation_conversion)

1.4. API Documentation 47

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

ActionConversionInterface

class maze.core.env.action_conversion.ActionConversionInterface
Interface specifying the conversion of agent actions to actual environment MazeActions.

maze_to_space(maze_action: Any)→ Dict[str, numpy.ndarray]
Converts environment MazeAction to agent action.

Parameters maze_action – the environment MazeAction.

Returns the agent action.

noop_action()
Converts environment MazeAction to agent action.

Returns the noop action.

abstract space()→ gym.spaces.Dict
Returns respective gym action space.

abstract space_to_maze(action: Dict[str, numpy.ndarray], maze_state: Any)→ Any
Converts agent action to environment MazeAction.

Parameters

• action – the agent action.

• maze_state – the environment state.

Returns the environment MazeAction.

MazeStateType

maze.core.env.maze_state.MazeStateType

MazeActionType

maze.core.env.maze_action.MazeActionType

RewardAggregatorInterface

class maze.core.env.reward.RewardAggregatorInterface
Event aggregation object for reward customization and shaping.

abstract classmethod to_scalar_reward(reward: Any)→ float
Aggregate sub-rewards to scalar reward.

This method is useful for example in a multi-agent setting where we could sum over multiple actors to
assign a joint reward.

Param reward: The aggregated reward (e.g. per-agent reward for multi-agent RL settings).

Returns The scalar reward returned by the environment.

48 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

EnvironmentContext

class maze.core.env.environment_context.EnvironmentContext
This class keeps track of services that can be employed by all objects of the agent-environment loop.

Currently the context is populated by

• Event service: Acts as backend of the PubSub service, collects all events from the env. The event
service can also be directly facilitated by components outside the environment (e.g. agent, heuristics,
state/observation mapping)

• Episode ID: Generates and keeps track of the current episode ID Episode IDs are used for connecting
logged statistics, events and recorded trajectory data together, making analysis and drill-down across these
different levels possible.

• Step ID: Tracks ID of the core env step we are currently in. Helps wrappers recognize core env steps in
multi-step scenarios.

property episode_id
Get the episode ID.

Episode ID is a UUID generated in a lazy manner, ensuring that if the ID is not needed, the potentially
costly random UUID generation is avoided. Once generated, it stays the same for the entire episode and
then is reset.

Returns Episode UUID as string

increment_env_step()→ None
This must be called after the env step execution, to notify the services about the start of a new step.

reset_env_episode()
This must be called when resetting the environment, to notify the context about the start of a new episode.

1.4.2 Environment Wrappers

This page contains the reference documentation for environment wrappers. Here you can find a more extensive write
up on how to work with these.

Overview

• Interfaces and Utilities

• Built-in Wrappers

• Observation Pre-Processing Wrapper

• Observation Normalization Wrapper

• Gym Environment Wrapper

1.4. API Documentation 49

https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

Interfaces and Utilities

These are the wrapper interfaces, base classes and interfaces:

Wrapper A transparent environment Wrapper that works with any
manifestation of BaseEnv .

Wrapper

class maze.core.wrappers.wrapper.Wrapper(*args, **kwds)
A transparent environment Wrapper that works with any manifestation of BaseEnv . It is intended as drop-in
replacement for gym.core.Wrapper.

Gym Wrappers elegantly expose methods and attributes of all nested envs. However wrapping destroys the class
hierarchy, querying the base classes is not straight-forward. This environment wrapper fixes the behaviour of
isinstance() for arbitrarily nested wrappers.

Suppose we want to check the base class:

class MyGymWrapper(Wrapper[gym.Env]): . . .

construct an env and wrap it env = MyEnv() env = MyGymWrapper(env)

this assertion fails assert isinstance(env, MyEnv) == True

TypingWrapper makes isinstance() work as intuitively expected:

this time use MyWrapper, which is derived from this Wrapper class env = MyEnv() env = My-
Wrapper(env)

now the assertions hold assert isinstance(env, MyEnv) == True assert isinstance(env, MyWrapper)
== True

Note:

gym.core.Wrapper assumes the existence of certain attributes (action_space, observation_space, reward_range,
metadata) and duplicates these attributes. This behaviour is unnecessary, because __getattr__ makes these mem-
bers of the inner environment transparently available anyway.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

Convert MazeState and MazeAction back into raw action and observation.

This method is mostly used when working with trajectory data, e.g. for imitation learning. As part of
trajectory data, MazeState and MazeActions are recorded. For imitation learning, they then need to be
converted to raw observations and actions in the desired format (i.e. using all the required wrappers etc.)

The conversion is done by first transforming the MazeState and MazeAction using the space interfaces in
MazeEnv, and then running them through the entire wrapper stack (“back up”).

Both the MazeState and the MazeAction on top of it are converted as part of this single method, as some
wrappers (mostly multi-step ones) need them both together (to be able to split them into observations and
actions taken in different sub-steps). If you are not using multi-step wrappers, you don’t need to convert
both MazeState and MazeAction, you can pass in just one of them. Not all wrappers have to support this
though.

See below for an example implementation.

50 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Note: The conversion of MazeState to observation is in the “natural” direction, how it takes place when
stepping the env. This is not true for the MazeAction to action conversion – when stepping the env, actions
are converted to MazeActions, whereas here the MazeAction needs to be converted back into the “raw”
action (i.e. in reverse direction).

(!) Attention: In case that there are some stateful wrappers in the wrapper stack (e.g. a wrapper stacking
observations from previous steps), you should ensure that (1) the first_step_in_episode flag is passed to
this function correctly and (2) that all states and MazeActions are converted in order – as they happened
during the recorded episode.

Parameters

• maze_state – MazeState to convert. If none, only MazeAction will be converted (not
all wrappers support this).

• maze_action – MazeAction (the one following the state given as the first param). If
none, only MazeState will be converted (not all wrappers support this, some need both).

• first_step_in_episode – True if this is the first step in the episode. Serves to
notify stateful wrappers (e.g. observation stacking) that they should reset their state.

Returns observation and action dictionaries (keys are IDs of sub-steps)

classmethod wrap(env: T, **kwargs)→ Union[T, WrapperType]
Creation method providing appropriate type hints. Preferred method to construct the wrapper compared to
calling the class constructor directly. :param env: The environment to be wrapped :param kwargs: Argu-
ments to be passed on to wrapper’s constructor. :return A newly created wrapper instance. Since we want
to allow sub-classes to use .wrap() without having to reimplement them and still facilitate proper typing
hints, we use a generic to represent the type of cls. See https://stackoverflow.com/questions/39205527/
can-you-annotate-return-type-when-value-is-instance-of-cls/39205612#39205612 on why/how to use
this to indicate that an instance of cls is returned.

Types of Wrappers:

ObservationWrapper A Wrapper with typing support modifying the environ-
ments observation.

ActionWrapper A Wrapper with typing support modifying the agents
action.

RewardWrapper A Wrapper with typing support modifying the reward
before passed to the agent.

WrapperRegistry Handles dynamic registration of Wrapper sub-classes.

ObservationWrapper

class maze.core.wrappers.wrapper.ObservationWrapper(*args, **kwds)
A Wrapper with typing support modifying the environments observation.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

Convert the observations, keep actions the same.

abstract observation(observation: Any)→ Any
Observation mapping method.

reset()→ Any
Intercept BaseEnv.reset and map observation.

1.4. API Documentation 51

https://stackoverflow.com/questions/39205527/can-you-annotate-return-type-when-value-is-instance-of-cls/39205612#39205612
https://stackoverflow.com/questions/39205527/can-you-annotate-return-type-when-value-is-instance-of-cls/39205612#39205612
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

step(action)→ Tuple[Any, Any, bool, Dict[Any, Any]]
Intercept BaseEnv.step and map observation.

ActionWrapper

class maze.core.wrappers.wrapper.ActionWrapper(*args, **kwds)
A Wrapper with typing support modifying the agents action.

abstract action(action: Any)→ Any
Abstract action mapping method.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

Reverse the actions, keep the observations the same.

abstract reverse_action(action: Any)→ Any
Abstract action reverse mapping method.

step(action)→ Tuple[Any, Any, bool, Dict[Any, Any]]
Intercept BaseEnv.step and map action.

RewardWrapper

class maze.core.wrappers.wrapper.RewardWrapper(*args, **kwds)
A Wrapper with typing support modifying the reward before passed to the agent.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

Keep both actions and observation the same.

abstract reward(reward: Any)→ Any
Reward mapping method.

step(action)→ Tuple[Any, Any, bool, Dict[Any, Any]]
Intercept BaseEnv.step and map rewards.

WrapperRegistry

class maze.core.wrappers.wrapper_registry.WrapperRegistry(*args, **kwds)
Handles dynamic registration of Wrapper sub-classes.

wrap_from_config(env: T, wrapper_config: Union[List[Union[None, str, Mapping[str, Any],
Any]], Mapping[str, Union[None, str, Mapping[str, Any], Any]]]) →
Union[maze.core.wrappers.wrapper.Wrapper, T]

Wraps environment in wrappers specified in wrapper_config.

Parameters

• env – Environment to wrap.

• wrapper_config – Wrapper specification.

Returns Wrapped environment of type Wrapper.

52 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Built-in Wrappers

Below you find the reference documentation for environment wrappers.

General Wrappers:

LogStatsWrapper A statistics logging wrapper for BaseEnv .
ObservationLoggingWrapper A observation logging wrapper for BaseEnv .
TimeLimitWrapper Wrapper to limit the environment step count, equivalent

to gym.wrappers.time_limit.
RandomResetWrapper A wrapper skipping the first few steps by taking random

actions.
SortedSpacesWrapper This class wraps a given StructuredEnvSpacesMixin

env to ensure that all observation- and action-spaces are
sorted alphabetically.

NoDictSpacesWrapper Wraps observations and actions by replacing dictionary
spaces with the sole contained sub-space.

LogStatsWrapper

class maze.core.wrappers.log_stats_wrapper.LogStatsWrapper(*args, **kwds)
A statistics logging wrapper for BaseEnv .

Parameters env – The environment to wrap.

close()
Close the stats rendering figure if needed.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

Keep both actions and observation the same.

get_stats(level: maze.core.log_stats.log_stats.LogStatsLevel) →
maze.core.log_stats.log_stats.LogStatsAggregator

Implementation of the LogStatsEnv interface, return the statistics aggregator.

get_stats_value(event: Callable, level: maze.core.log_stats.log_stats.LogStatsLevel, name: Op-
tional[str] = None)→ Union[int, float, numpy.ndarray, dict]

Implementation of the LogStatsEnv interface, obtain the value from the cached aggregator statistics.

render_stats(event_name: str = 'BaseEnvEvents.reward', metric_name: str = 'value', aggre-
gation_func: Optional[Union[str, Callable]] = None, group_by: str = None,
post_processing_func: Optional[Union[str, Callable]] = 'cumsum')

Render statistics from the currently running episode.

Rendering is based on event logs. You can select arbitrary events from those dispatched by the currently
running environment.

Parameters

• event_name – Name of the even the even log corresponds to

• metric_name – Metric to use (one of the event attributes, e.g. “n_items” – depends on
the event type)

• aggregation_func – Optionally, specifies how to aggregate the metric on step level,
i.e. when there are multiple same events dispatched during the same step.

1.4. API Documentation 53

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• group_by – Optionally, another of event attributes to group by on the step level (e.g.
“product_id”)

• post_processing_func – Optionally, a function to post-process the data (“cumsum”
is often used)

reset()→ Any
Reset the environment and trigger the episode statistics calculation of the previous run.

step(action: Any)→ Tuple[Any, Any, bool, Dict[Any, Any]]
Collect the rewards for the logging statistics

classmethod wrap(env: T, logging_prefix: Optional[str] = None) → Union[T,
maze.core.log_stats.log_stats_env.LogStatsEnv]

Creation method providing appropriate type hints. Preferred method to construct the wrapper compared to
calling the class constructor directly.

Parameters

• env – The environment to be wrapped.

• logging_prefix – The episode statistics is connected to the logging system with this
tagging prefix. If None, no logging happens.

:return A newly created wrapper instance.

write_epoch_stats()
Implementation of the LogStatsEnv interface, call reduce on the episode aggregator.

ObservationLoggingWrapper

class maze.core.wrappers.observation_logging_wrapper.ObservationLoggingWrapper(*args,
**kwds)

A observation logging wrapper for BaseEnv .

Parameters env – The environment to wrap.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

Keep both actions and observation the same.

step(action: Any)→ Tuple[Any, Any, bool, Dict[Any, Any]]
Create the observation logs on every step

TimeLimitWrapper

class maze.core.wrappers.time_limit_wrapper.TimeLimitWrapper(*args, **kwds)
Wrapper to limit the environment step count, equivalent to gym.wrappers.time_limit.

Additionally to the gym wrapper, this one supports adjusting the limit after construction.

close()→ None
forward call to the inner env

54 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

This wrapper does not modify observations and actions.

reset()→ Any
Override BaseEnv.reset to reset the step count.

seed(seed: int)→ None
forward call to the inner env

set_max_episode_steps(max_episode_steps: int)→ None
Set the step limit.

Parameters max_episode_steps – The environment step() function sets the done flag if
this step limit is reached. If 0, the step limit is disabled.

step(action: Any)→ Tuple[Any, Any, bool, Dict[Any, Any]]
Override BaseEnv.step and set done if the step limit is reached.

RandomResetWrapper

class maze.core.wrappers.random_reset_wrapper.RandomResetWrapper(*args,
**kwds)

A wrapper skipping the first few steps by taking random actions. This is useful for skipping irrelevant initial
parts of a trajectory or for introducing randomness in the training process.

Parameters

• env – Environment/wrapper to wrap.

• min_skip_steps – Minimum number of steps to skip.

• max_skip_steps – Maximum number of steps to skip.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

This wrapper does not modify observations and actions.

reset()→ Any
Override BaseEnv.reset to reset the step count.

SortedSpacesWrapper

class maze.core.wrappers.sorted_spaces_wrapper.SortedSpacesWrapper(*args,
**kwds)

This class wraps a given StructuredEnvSpacesMixin env to ensure that all observation- and action-spaces are
sorted alphabetically. This is required that Maze custom action distributions and observation processing are in
line with RLLib’s internal processing pipeline.

property action_space
The currently active gym action space.

1.4. API Documentation 55

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

This wrapper does not modify observations and actions.

property observation_space
Keep this env compatible with the gym interface by returning the observation space of the current policy.

NoDictSpacesWrapper

class maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper(*args,
**kwds)

Wraps observations and actions by replacing dictionary spaces with the sole contained sub-space. This wrapper
is for example required when working with external frameworks not supporting dictionary spaces.

action(action: numpy.ndarray)→ Dict[str, numpy.ndarray]
Implementation of ActionWrapper interface.

property action_space
The currently active gym action space.

property action_spaces_dict
A dictionary of gym action spaces, with policy IDs as keys.

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

Convert the observations, reverse the actions.

observation(observation: Any)→ Any
Implementation of ObservationWrapper interface.

property observation_space
The currently active gym observation space.

property observation_spaces_dict
A dictionary of gym observation spaces, with policy IDs as keys.

reset()→ Any
Intercept BaseEnv.reset and map observation.

reverse_action(action: Dict[str, numpy.ndarray])→ numpy.ndarray
Implementation of ActionWrapper interface.

step(action)→ Tuple[Any, Any, bool, Dict[Any, Any]]
Intercept BaseEnv.step and map observation.

ObservationWrappers:

DictObservationWrapper Wraps a single observation into a dictionary space.
ObservationLoggingWrapper A observation logging wrapper for BaseEnv .
ObservationStackWrapper An wrapper stacking the observations of multiple sub-

sequent time steps.
NoDictObservationWrapper Wraps observations by replacing the dictionary obser-

vation space with the sole contained sub-space.

56 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

DictObservationWrapper

class maze.core.wrappers.dict_observation_wrapper.DictObservationWrapper(*args,
**kwds)

Wraps a single observation into a dictionary space.

observation(observation: numpy.ndarray)
Implementation of ObservationWrapper interface.

ObservationStackWrapper

class maze.core.wrappers.observation_stack_wrapper.ObservationStackWrapper(*args,
**kwds)

An wrapper stacking the observations of multiple subsequent time steps.

Provides functionality for:

• selecting which observations to stack

• how many past observations should be stacked

• stacking deltas with the current step observation (instead of the observations itself)

Parameters

• env – Environment/wrapper to wrap.

• stack_config – The observation stacking configuration.

observation: The name (key) of the respective observation keep_original: Bool, indicates
weather to keep or remove the original observation from the dictionary. tag: Optional[str],
tag to add to observation (e.g. stacked) delta: Bool, if true deltas are stacked to the previous
observation stack_steps: Int, number of past steps to be stacked

get_observation_and_action_dicts(maze_state: Optional[Any], maze_action: Op-
tional[Any], first_step_in_episode: bool) →
Tuple[Optional[Dict[Union[int, str], Any]], Op-
tional[Dict[Union[int, str], Any]]]

If this is the first step in an episode, reset the observation stack.

observation(observation: Dict[str, numpy.ndarray])→ Dict[str, numpy.ndarray]
Stack observations.

Parameters observation – The observation to be stacked.

Returns The sacked observation.

reset()→ Dict[str, numpy.ndarray]
Intercept ObservationWrapper.reset and map observation.

1.4. API Documentation 57

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

NoDictObservationWrapper

class maze.core.wrappers.no_dict_observation_wrapper.NoDictObservationWrapper(*args,
**kwds)

Wraps observations by replacing the dictionary observation space with the sole contained sub-space. This
wrapper is for example required when working with external frameworks not supporting dictionary observation
spaces.

observation(observation: Any)→ Any
Implementation of ObservationWrapper interface.

property observation_space
The currently active gym observation space.

property observation_spaces_dict
A dictionary of gym observation spaces, with policy IDs as keys.

ActionWrappers:

DictActionWrapper Wraps either a single action space or a tuple action space
into dictionary space.

NoDictActionWrapper Wraps actions by replacing the dictionary action space
with the sole contained sub-space.

SplitActionsWrapper Splits an actions into separate ones.
DiscretizeActionsWrapper The DiscretizeActionsWrapper provides functionality

for discretizing individual continuous actions into dis-
crete

DictActionWrapper

class maze.core.wrappers.dict_action_wrapper.DictActionWrapper(*args, **kwds)
Wraps either a single action space or a tuple action space into dictionary space.

Parameters env – The environment to wrap.

action(action: Dict[str, numpy.ndarray])→ Union[numpy.ndarray, Tuple[numpy.ndarray]]
Implementation of ActionWrapper interface.

reverse_action(action: Union[numpy.ndarray, Tuple[numpy.ndarray]]) → Dict[str,
numpy.ndarray]

Implementation of ActionWrapper interface.

NoDictActionWrapper

class maze.core.wrappers.no_dict_action_wrapper.NoDictActionWrapper(*args,
**kwds)

Wraps actions by replacing the dictionary action space with the sole contained sub-space. This wrapper is for
example required when working with external frameworks not supporting dictionary action spaces.

action(action: numpy.ndarray)→ Dict[str, numpy.ndarray]
Implementation of ActionWrapper interface.

property action_space
The currently active gym action space.

property action_spaces_dict
A dictionary of gym action spaces, with policy IDs as keys.

58 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

reverse_action(action: Dict[str, numpy.ndarray])→ numpy.ndarray
Implementation of ActionWrapper interface.

SplitActionsWrapper

class maze.core.wrappers.split_actions_wrapper.SplitActionsWrapper(*args,
**kwds)

Splits an actions into separate ones.

An example is given by the LunarLanderContinuous-v2 env. Here we have a box action spaces with shape (2,)
such that dimension 0 is the up/down action and dimension 1 is the left/right action. Now if we would like to
split this action correspondingly we can wrap the env with the following config:

split_config:

action:

action_up: indices: [0]

action_side: indices: [1]

Now the actions as well as the action space is consists of two actions (action_up/action_side).

Parameters

• env – Environment/wrapper to wrap.

• split_config – The action splitting configuration.

action(action: Dict[str, numpy.ndarray])→ Dict[str, numpy.ndarray]
Implementation of ActionWrapper interface.

property action_space
The currently active gym action space.

property action_spaces_dict
A dictionary of gym action spaces, with policy IDs as keys.

reverse_action(action: Dict[str, numpy.ndarray])→ Dict[str, numpy.ndarray]
Implementation of ActionWrapper interface.

DiscretizeActionsWrapper

class maze.core.wrappers.discretize_actions_wrapper.DiscretizeActionsWrapper(*args,
**kwds)

The DiscretizeActionsWrapper provides functionality for discretizing individual continuous actions into discrete
ones.

An example is given by having a continuous action called ‘action_up’ with space: gym.spaces.Box(shape=(5,),
low=[-1,-1,-1,-1,-1], high=[1,1,1,1,1]

discretization_config:

action_up: num_bins: 5 low: [-1, 0, 0.5, 0, 0] high: 1

Now the action space will be split where each of the 5 continuous values of the box spaces are split evenly
within the ranges of (-1,1),(0,1),(0.5,1), (0,1), (0,1) respectively.

Parameters

• env – Environment/wrapper to wrap.

1.4. API Documentation 59

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

• discretization_config – The action discretization configuration.

action(action: Dict[str, numpy.ndarray])→ Dict[str, numpy.ndarray]
Implementation of ActionWrapper interface.

property action_space
The currently active gym action space.

property action_spaces_dict
A dictionary of gym action spaces, with policy IDs as keys.

reverse_action(action: Dict[str, numpy.ndarray])→ Dict[str, numpy.ndarray]
Implementation of ActionWrapper interface.

RewardWrappers:

RewardScalingWrapper Scales original step reward by a multiplicative scaling
factor.

RewardClippingWrapper Clips original step reward to range [min, max].

RewardScalingWrapper

class maze.core.wrappers.reward_scaling_wrapper.RewardScalingWrapper(*args,
**kwds)

Scales original step reward by a multiplicative scaling factor.

Parameters

• env – The underlying environment.

• scale – Multiplicative reward scaling factor.

reward(reward: float)→ float
Scales the original reward.

Parameters reward – The original reward.

Returns The scaled reward.

RewardClippingWrapper

class maze.core.wrappers.reward_clipping_wrapper.RewardClippingWrapper(*args,
**kwds)

Clips original step reward to range [min, max].

Parameters

• env – The underlying environment.

• min_val – Minimum allowed reward value.

• max_val – Maximum allowed reward value.

reward(reward: float)→ float
Clips the original reward.

Parameters reward – The original reward.

Returns The clipped reward.

60 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

Observation Pre-Processing Wrapper

Below you find the reference documentation for observation pre-processing. Here you can find a more extensive write
up on how to work with the observation pre-processing package.

These are interfaces and components required for observation pre-processing:

PreProcessingWrapper An observation pre-processing wrapper.
PreProcessor Interface for observation pre-processors.

PreProcessingWrapper

class maze.core.wrappers.observation_preprocessing.preprocessing_wrapper.PreProcessingWrapper(*args,
**kwds)

An observation pre-processing wrapper. It provides functionality for:

• pre-processing observations (flattening, one-hot encoding, . . .)

• adopting the observation spaces accordingly

Parameters

• env – Environment/wrapper to wrap.

• pre_processor_mapping – The pre-processing configuration. Example mappings can
be found in our reference documentation.

observation(observation: Any)→ Any
Pre-processes observations.

Parameters observation – The observation to be pre-processed.

Returns The pre-processed observation.

PreProcessor

class maze.core.wrappers.observation_preprocessing.preprocessors.base.PreProcessor(observation_space:
gym.spaces.Space,
**kwargs)

Interface for observation pre-processors. Pre-processors implementing this interface can be used in combination
with the PreProcessingWrapper.

Parameters

• observation_space – The observation space to pre-process.

• kwargs – Arguments to be passed on to preprocessor’s constructor.

abstract process(observation: numpy.ndarray)→ numpy.ndarray
Pre-processes the observation.

Parameters observation – The observation to pre-process.

Returns The pre-processed observation.

abstract processed_shape()→ Tuple[int, . . .]
Computes the observation’s shape after pre-processing.

Returns The resulting shape.

1.4. API Documentation 61

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

abstract processed_space()→ gym.spaces.Box
Modifies the given observation space according to the respective pre-processor.

Returns The updated observation space.

tag()→ str
Returns a tag identifying the pre-processed feature.

Returns The pre-processor’s tag.

These are the available built-in maze.pre_processors compatible with the PreProcessingWrapper:

FlattenPreProcessor An array flattening pre-processor.
OneHotPreProcessor An one-hot encoding pre-processor for categorical fea-

tures.
ResizeImgPreProcessor An image resizing pre-processor.
TransposePreProcessor An array transposition pre-processor.
UnSqueezePreProcessor An un-squeeze pre-processor.
Rgb2GrayPreProcessor An rgb-to-gray-scale conversion pre-processor.

FlattenPreProcessor

class maze.core.wrappers.observation_preprocessing.preprocessors.flatten.FlattenPreProcessor(observation_space:
gym.spaces.Box,
num_flatten_dims:
int)

An array flattening pre-processor.

Parameters

• observation_space – The observation space to pre-process.

• num_flatten_dims – The number of dimensions to flatten out (from right).

process(observation: numpy.ndarray)→ numpy.ndarray
implementation of PreProcessor interface

processed_shape()→ Tuple[int, . . .]
implementation of PreProcessor interface

processed_space()→ gym.spaces.Box
implementation of PreProcessor interface

OneHotPreProcessor

class maze.core.wrappers.observation_preprocessing.preprocessors.one_hot.OneHotPreProcessor(observation_space:
gym.spaces.Space,
**kwargs)

An one-hot encoding pre-processor for categorical features.

process(observation: numpy.ndarray)→ numpy.ndarray
implementation of PreProcessor interface

processed_shape()→ Tuple[int, . . .]
implementation of PreProcessor interface

processed_space()→ gym.spaces.Box
implementation of PreProcessor interface

62 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

ResizeImgPreProcessor

class maze.core.wrappers.observation_preprocessing.preprocessors.resize_img.ResizeImgPreProcessor(observation_space:
gym.spaces.Box,
tar-
get_size:
Se-
quence[int],
trans-
pose:
bool)

An image resizing pre-processor.

Parameters

• observation_space – The observation space to pre-process.

• target_size – Target size of resized image.

• transpose – Transpose rgb channel is required (should be last dimension such as [96, 96,
3]).

process(observation: numpy.ndarray)→ numpy.ndarray
implementation of PreProcessor interface

processed_shape()→ Tuple[int, . . .]
implementation of PreProcessor interface

processed_space()→ gym.spaces.Box
implementation of PreProcessor interface

TransposePreProcessor

class maze.core.wrappers.observation_preprocessing.preprocessors.transpose.TransposePreProcessor(observation_space:
gym.spaces.Box,
axes:
Se-
quence[int])

An array transposition pre-processor.

Parameters

• observation_space – The observation space to pre-process.

• axes – The num ordering of the axes of the input array.

process(observation: numpy.ndarray)→ numpy.ndarray
implementation of PreProcessor interface

processed_shape()→ Tuple[int, . . .]
implementation of PreProcessor interface

processed_space()→ gym.spaces.Box
implementation of PreProcessor interface

1.4. API Documentation 63

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

UnSqueezePreProcessor

class maze.core.wrappers.observation_preprocessing.preprocessors.unsqueeze.UnSqueezePreProcessor(observation_space:
gym.spaces.Box,
dim:
int)

An un-squeeze pre-processor.

Parameters

• observation_space – The observation space to pre-process.

• dim – Index where to add an additional dimension.

process(observation: numpy.ndarray)→ numpy.ndarray
implementation of PreProcessor interface

processed_shape()→ Tuple[int, . . .]
implementation of PreProcessor interface

processed_space()→ gym.spaces.Box
implementation of PreProcessor interface

Rgb2GrayPreProcessor

class maze.core.wrappers.observation_preprocessing.preprocessors.rgb2gray.Rgb2GrayPreProcessor(observation_space:
gym.spaces.Box,
rgb_dim:
int)

An rgb-to-gray-scale conversion pre-processor.

Parameters

• observation_space – The observation space to pre-process.

• rgb_dim – Dimension of the rgb channels.

process(observation: numpy.ndarray)→ numpy.ndarray
implementation of PreProcessor interface

processed_shape()→ Tuple[int, . . .]
implementation of PreProcessor interface

processed_space()→ gym.spaces.Box
implementation of PreProcessor interface

Observation Normalization Wrapper

Below you find the reference documentation for observation normalization. Here you can find a more extensive write
up on how to work with the observation normalization package.

These are interfaces and utility functions required for observation normalization:

ObservationNormalizationWrapper An observation normalization wrapper.
ObservationNormalizationStrategy Abstract base class for normalization strategies.
obtain_normalization_statistics Obtain the normalization statistics of a given environ-

ment.
continues on next page

64 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

Table 11 – continued from previous page
estimate_observation_normalization_statisticsHelper function estimating normalization statistics.
make_normalized_env_factory Wrap an existing env factory to assign the passed nor-

malization statistics.

ObservationNormalizationWrapper

class maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper(*args,
**kwds)

An observation normalization wrapper. It provides functionality for:

• normalizing observations according to specified normalization strategies

• clipping observations according to specified min and max values

• estimating normalization statistics from observations collecting by interacting with the environment

• manually overwriting the observation normalization parameters

The current implementation assumes that observation space is always a Dict (even if just a Dict-wrapped Box).

Parameters

• env – Environment/wrapper to wrap.

• default_strategy – The default observation normalization strategy.

• default_statistics – Manual default normalization statistics.

• statistics_dump – Path to a pickle file dump of normalization statistics.

• sampling_policy – The sampling policy for estimating the statistics.

• exclude – List of observation keys to exclude from normalization.

• manual_config – Additional manual configuration options.

dump_statistics()→ None
Dump statistics to file.

estimate_statistics()→ None
Estimates and sets the observation statistics from collected observations.

get_statistics()→ Dict[str, Dict[str, Union[numpy.ndarray, float, int, Iterable[Union[float, int]]]]]
Returns the normalization statistics of the respective normalization strategy. :return: The normalization
statistics for all sub steps and all dictionary observations.

observation(observation: Any)→ Any
Collect observations for statistics computation or normalize them.

Parameters observation – The observation to be normalized.

Returns The normalized observation.

classmethod register_new_observation_normalization_strategy(containing_submodule:
Any)

Registers a new observation normalization strategy.

Parameters containing_submodule – Add all classes implementing ObservationNormal-
izationStrategy by walking the module recursively.

set_normalization_statistics(stats: Dict[str, Dict[str, Union[numpy.ndarray, float, int, Iter-
able[Union[float, int]]]]])→ None

Apply existing normalization statistics.

1.4. API Documentation 65

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

Parameters stats – The statistics dict

set_observation_collection(status: bool)→ None
Activate / deactivate observation collection.

Parameters status – If True observations are collected for statistics computation. If False
observations are normalized with the provided statistics

ObservationNormalizationStrategy

class maze.core.wrappers.observation_normalization.normalization_strategies.base.ObservationNormalizationStrategy(observation_space:
gym.spaces.Box,
clip_range:
Tu-
ple[Union[float,
int],
Union[float,
int]],
axis:
Op-
tional[Union[int,
Tu-
ple[int],
List[int]]])

Abstract base class for normalization strategies.

Provides functionality for:

• normalizing gym.Box observations as well as for normalizing the originally defined observation space.

• setting and getting the currently employed normalization statistics.

• interface definition for estimating the normalization statistics from a list of observations

• interface definition for normalizing a given gym.Box (np.ndarray) observation

Parameters

• observation_space – The observations space to be normalized.

• clip_range – The minimum and maximum value allowed for an observation.

• axis – Defines the axis along which to compute normalization statistics

abstract estimate_stats(observations: List[numpy.ndarray]) → Dict[str,
Union[numpy.ndarray, float, int, Iterable[Union[float, int]]]]

Estimate observation statistics from collected observations.

Parameters observations – A lists of observations.

get_statistics()→ Dict[str, Union[numpy.ndarray, float, int, Iterable[Union[float, int]]]]
Get normalization statistics.

Returns The normalization statistics.

is_initialized()→ bool
Checks if the normalization strategy is fully initialized.

Returns True if fully initialized and ready to normalize; else False.

66 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

normalize_and_process_value(value: numpy.ndarray)→ numpy.ndarray
Normalizes and post-processes the actual observation (see also: normalize_value).

Parameters value – Observation value to be normalized.

Returns Normalized and processed observation.

abstract normalize_value(value: numpy.ndarray)→ numpy.ndarray
Normalizes the actual observation value with provided statistics. The type and shape of value and statistics
have to match.

Parameters value – Observation to be normalized.

Returns Normalized observation.

normalized_space()→ gym.spaces.Box
Normalizes extrema (low and high) in the observation space with respect to the given statistics. (e.g. it
sets the maximum value of a Box space to the maximum in the respective observation)

Returns Observation space with extrema adjusted w.r.t. statistics and normalization strategy.

set_statistics(stats: Dict[str, Union[numpy.ndarray, float, int, Iterable[Union[float, int]]]]) →
None

Set normalization statistics.

Parameters stats – A dictionary containing the respective observation normalization statis-
tics.

obtain_normalization_statistics

class maze.core.wrappers.observation_normalization.observation_normalization_utils.obtain_normalization_statistics(env:
Union[maze.core.env.base_env.BaseEnv,
maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper],
n_samples:
int)

Obtain the normalization statistics of a given environment.

• Returns None, if the ObservationNormalizationWrapper is not implemented

• Returns the loaded statistics, if available

• Runs the estimation and returns the newly calculated statistics, if not loaded previously

Parameters

• env – Environment with applied ObservationNormalizationWrapper (function returns None
immediately if this is not the case.

• n_samples – Number of samples (=steps) to collect normalization statistics at the begin-
ning of the training.

Returns The normalization statistics or None if the ObservationNormalizationWrapper is not im-
plemented by the env.

1.4. API Documentation 67

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

estimate_observation_normalization_statistics

class maze.core.wrappers.observation_normalization.observation_normalization_utils.estimate_observation_normalization_statistics(env:
Union[maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin],
n_samples:
int)

Helper function estimating normalization statistics. :param env: The observation normalization wrapped envi-
ronment. :param n_samples: The number of samples to take for statistics computation.

make_normalized_env_factory

class maze.core.wrappers.observation_normalization.observation_normalization_utils.make_normalized_env_factory(env_factory:
Callable[],
Union[maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin,
maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper]],
nor-
mal-
iza-
tion_statistics:
Dict[str,
Dict[str,
Union[numpy.ndarray,
float,
int,
It-
er-
able[Union[float,
int]]]]])

Wrap an existing env factory to assign the passed normalization statistics.

Parameters

• env_factory – The existing env factory

• normalization_statistics – The normalization statistics that should be applied to
the env

Returns The wrapped env factory

These are the available built-in maze.normalization_strategies compatible with the ObservationNormalizationWrap-
per:

MeanZeroStdOneObservationNormalizationStrategyNormalizes observations to have zero mean and stan-
dard deviation one.

RangeZeroOneObservationNormalizationStrategyNormalizes observations to value range [0, 1].

68 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

MeanZeroStdOneObservationNormalizationStrategy

class maze.core.wrappers.observation_normalization.normalization_strategies.mean_zero_std_one.MeanZeroStdOneObservationNormalizationStrategy(observation_space:
gym.spaces.Box,
clip_range:
Tu-
ple[Union[float,
int],
Union[float,
int]],
axis:
Op-
tional[Union[int,
Tu-
ple[int],
List[int]]])

Normalizes observations to have zero mean and standard deviation one.

The strategy first subtracts the observation mean followed by a division with the standard deviation. Depending
on the original distribution of the input observations this yields a standard Normal.

estimate_stats(observations: List[numpy.ndarray]) → Dict[str, Union[numpy.ndarray, float, int,
Iterable[Union[float, int]]]]

Implementation of ObservationNormalizationStrategy interface.

normalize_value(value: numpy.ndarray)→ numpy.ndarray
Implementation of ObservationNormalizationStrategy interface.

RangeZeroOneObservationNormalizationStrategy

class maze.core.wrappers.observation_normalization.normalization_strategies.range_zero_one.RangeZeroOneObservationNormalizationStrategy(observation_space:
gym.spaces.Box,
clip_range:
Tu-
ple[Union[float,
int],
Union[float,
int]],
axis:
Op-
tional[Union[int,
Tu-
ple[int],
List[int]]])

Normalizes observations to value range [0, 1].

The strategy subtracts in a first step the minimum observed value to shift the lowest value after normaliza-
tion to zero. In a subsequent step we divide the observation with the maximum of the previous step yielding
observations in the range [0, 1].

estimate_stats(observations: List[numpy.ndarray]) → Dict[str, Union[numpy.ndarray, float, int,
Iterable[Union[float, int]]]]

Implementation of ObservationNormalizationStrategy interface.

normalize_value(value: numpy.ndarray)→ numpy.ndarray
Implementation of ObservationNormalizationStrategy interface.

1.4. API Documentation 69

https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

Gym Environment Wrapper

Below you find the reference documentation for wrapping gym environments. Here you can find a more extensive
write up on how to integrate Gym environments within Maze.

These are the contained components:

GymMazeEnv Wraps a Gym env into a Maze environment.
make_gym_maze_env Initializes a GymMazeEnv by registered Gym env

name (id).
GymCoreEnv Wraps a Gym environment into a maze core environ-

ment.
GymRenderer A Maze-compatible Gym renderer.
GymRewardAggregator A dummy reward aggregation object simply repeating

the environment’s original reward.
GymObservationConversion A dummy conversion interface asserting that the obser-

vation is packed into a dictionary space.
GymActionConversion A dummy conversion interface asserting that the action

is packed into a dictionary space.

GymMazeEnv

class maze.core.wrappers.maze_gym_env_wrapper.GymMazeEnv(*args, **kwds)
Wraps a Gym env into a Maze environment.

Example: env = GymMazeEnv(env=”CartPole-v0”)

Parameters env – The gym environment to wrap or the environment id.

clone_from(maze_state: Any)→ None
Reset this gym environment to the given state by creating a deep copy of the env.state instance variable

make_gym_maze_env

class maze.core.wrappers.maze_gym_env_wrapper.make_gym_maze_env(name: str)
Initializes a GymMazeEnv by registered Gym env name (id).

Parameters name – The name (id) of a registered Gym environment.

Returns The instantiated environment.

GymCoreEnv

class maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv(env: gym.Env)
Wraps a Gym environment into a maze core environment.

Parameters env – The Gym environment.

actor_id()→ Tuple[Union[str, int], int]
Intercept CoreEnv.actor_id

close()→ None
Intercept CoreEnv.close

70 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

get_maze_state()→ Any
Intercept CoreEnv.get_maze_state

get_renderer()→ maze.core.rendering.renderer.Renderer
Intercept CoreEnv.get_renderer

get_serializable_components()→ Dict[str, Any]
Intercept CoreEnv.get_serializable_components

is_actor_done()→ bool
Intercept CoreEnv.is_actor_done

reset()→ Any
Intercept CoreEnv.reset

seed(seed: int)→ None
Intercept CoreEnv.seed

step(maze_action: Any)→ Tuple[Any, Union[float, numpy.ndarray, Any], bool, Dict[Any, Any]]
Intercept CoreEnv.step

GymRenderer

class maze.core.wrappers.maze_gym_env_wrapper.GymRenderer(env: gym.Env)
A Maze-compatible Gym renderer.

render(maze_state: Any, maze_action: Optional[Any], events:
maze.core.log_events.step_event_log.StepEventLog, **kwargs)→ None

Render the current state of the environment.

GymRewardAggregator

class maze.core.wrappers.maze_gym_env_wrapper.GymRewardAggregator
A dummy reward aggregation object simply repeating the environment’s original reward.

get_interfaces()→ List[Type[abc.ABC]]
Nothing to do here

classmethod to_scalar_reward(reward: float)→ float
Nothing to do here for this env.

Param reward: already a scalar reward

Returns the same scalar reward

GymObservationConversion

class maze.core.wrappers.maze_gym_env_wrapper.GymObservationConversion(env:
gym.Env)

A dummy conversion interface asserting that the observation is packed into a dictionary space.

Parameters env – Gym environment.

maze_to_space(maze_state: Any)→ Any
Converts core environment state to agent observation.

space()→ gym.Space
Returns respective gym observation space.

1.4. API Documentation 71

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/abc.html#abc.ABC
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

space_to_maze(observation: Dict[str, numpy.ndarray])→ Any
Converts agent observation to core environment state. (This is most like not possible for most observation
observation_conversion)

GymActionConversion

class maze.core.wrappers.maze_gym_env_wrapper.GymActionConversion(env:
gym.Env)

A dummy conversion interface asserting that the action is packed into a dictionary space.

Parameters env – Gym environment.

maze_to_space(maze_action: Any)→ Dict[str, numpy.ndarray]
Converts environment MazeAction to agent action.

Parameters maze_action – the environment MazeAction.

Returns the agent action.

space()→ gym.spaces.Dict
Returns respective gym action space.

space_to_maze(action: Dict[str, numpy.ndarray], maze_state: Any)→ Any
Converts agent action to environment MazeAction.

Parameters

• action – the agent action.

• maze_state – the environment state.

Returns the environment MazeAction.

1.4.3 Event System, Logging & Statistics

This page contains the reference documentation for the event and logging system.

Overview

• Event System

• Event Logging

• Statistics Logging

Event System

These are interfaces, classes and utility functions of the event system:

Subscriber Event aggregation object.
Pubsub Implementation of a message broker (Pubsub stands for

publish and subscribe).
event_topic_factory Constructs a proxy instance of the event interface, as

required by EventService and LogStatsAggregator.
continues on next page

72 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

Table 14 – continued from previous page
EventScope Base class for all services that integrate with the event

system and therefore use EventService as their backend.
EventService Manages the recording of event invocations and pro-

vides simple event routing functionality.
EventCollection A collection of EventRecord instances that can be

queried by event specification.
EventRecord This auxiliary class is used to record calls to the event

interface

Subscriber

class maze.core.events.pubsub.Subscriber
Event aggregation object.

abstract get_interfaces()→ List[Type[abc.ABC]]
Specification of the event interfaces this subscriber wants to receive events from. Every subscriber must
implement this configuration method.

Returns A list of interface classes

notify_event(event: maze.core.events.event_record.EventRecord)
Notify the subscriber of a new event occurrence.

Parameters event – the event

Returns None

query_events(event_spec: Union[Callable, Iterable[Callable]])→ Iterable
Return all events collected at the current env step matching one or more given event types. The event types
are specified by the interface member function object itself.

Event calls are recorded as EventRecord, an object providing access to the passed arguments of the event
method.

Parameters event_spec – Specifies the event type by the interface member function. Can
either be a single event type specification or a list of specifications.

Returns An iterable to the event objects.

reset()
Reset event aggregation.

Returns None

Pubsub

class maze.core.events.pubsub.Pubsub(event_collector: maze.core.events.event_service.EventService)
Implementation of a message broker (Pubsub stands for publish and subscribe).

create_event_topic(interface_class: Type[T])→ T
Returns a proxy instance of the event interface, which the publisher can use to publish events. Behind
the scenes every event invocation is serialized as EventRecord object and then routed to the registered
subscribers.

Parameters interface_class – The class object of an abstract interface that defines the
events as methods.

1.4. API Documentation 73

https://python.readthedocs.io/en/latest/library/abc.html#abc.ABC

Maze

Returns A proxy object, dynamically derived from the passed interface_class. This class is
intended to be used by the publisher to trigger events.

interface_to_subscribers: Dict[Type[T], List[Subscriber]]
map of interface class to the list of subscribed receivers

notify_event(event: maze.core.events.event_record.EventRecord)→ None
Notify about a new event. This is invoked by the EventService.

:param event The event to be added.

notify_next_step()
Resets the aggregated events of all registered subscribers

Returns None

register_subscriber(new_subscriber: maze.core.events.pubsub.Subscriber)

Register a subscriber to receive events from certain published interfaces, specified by Sub-
scriber.get_interfaces()

Parameters new_subscriber – the subscriber to be registered

Returns None

subscribers: List[Subscriber]
all registered subscribers

event_topic_factory

class maze.core.events.event_topic_factory.event_topic_factory(interface_class:
Type[T],
fn_notify_event:
Callable[[maze.core.events.event_record.EventRecord],
None])

Constructs a proxy instance of the event interface, as required by EventService and LogStatsAggregator.

Parameters

• interface_class – The class object of an abstract interface that defines the events as
methods.

• fn_notify_event – The proxy forwards all method invocations to fn_notify_event

Returns A proxy object, dynamically derived from the passed interface_class.

EventScope

class maze.core.events.event_service.EventScope
Base class for all services that integrate with the event system and therefore use EventService as their backend.

Currently PubSub is the only concrete implementation.

abstract notify_event(event: maze.core.events.event_record.EventRecord)→ None
Called on all event occurrences, if the respective event interface is registered for this scope.

Parameters event – the event

Returns None

74 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

abstract notify_next_step()→ None
Notification after the env step execution about the start of a new step.

EventService

class maze.core.events.event_service.EventService
Manages the recording of event invocations and provides simple event routing functionality. There is one
EventService instance in every agent-environment loop, provided by the AgentEnvironmentContext.

Within the environment the richer routing functionality provided by PubSub should be utilized, rather than
directly interacting with this class.

class TopicInfo(interface_class: Type[T], scope: maze.core.events.event_service.EventScope,
proxy: T)

internal class to keep track of the topic state, including the collected events

create_event_topic(interface_class: Type[T], scope: maze.core.events.event_service.EventScope
= None)→ T

Create a proxy instance of the event interface, which can be used conveniently to publish events. Returns
an existing proxy, if it has been created before.

Parameters

• interface_class – The class object of an abstract interface that defines the events as
methods.

• scope – Every event topic can be bound to a single scope, e.g. a certain PubSub instance,
to ensure that all events of the topic interface_class will be received by this PubSub in-
stance.

Returns A proxy object, dynamically derived from the passed interface_class, that can be used
to trigger events.

iterate_event_records() → Generator[maze.core.events.event_record.EventRecord, None,
None]

A generator to iterate all collected events

notify_event(event: maze.core.events.event_record.EventRecord)→ None
Notify the event service about a new event. This is invoked by the event topic proxies.

:param event The event to be added.

notify_next_step()
Notify this service after the env step execution about the start of a new step. This should only be called by
the AgentEnvironmentContext.

Clears all collected events and notifies all registered scopes.

EventCollection

class maze.core.events.event_collection.EventCollection(events: Iter-
able[maze.core.events.event_record.EventRecord]
= ())

A collection of EventRecord instances that can be queried by event specification.

append(event: maze.core.events.event_record.EventRecord)
Append a new event record to the collection.

extend(event_list: Iterable[maze.core.events.event_record.EventRecord])
Extends self.events with a list of new event records.

1.4. API Documentation 75

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

query_events(event_spec: Union[Callable, Iterable[Callable]])→ Iterable

Return all events collected at the current env step matching one or more given event types. The event
types are specified by the interface member function object itself.

Event calls are recorded as EventRecord, an object providing access to the passed arguments of the
event method.

Parameters event_spec – Specifies the event type by the interface member function. Can
either be a single event type specification or a list of specifications.

Returns An iterable to the event objects.

EventRecord

class maze.core.events.event_record.EventRecord(interface_class: Type[abc.ABC], in-
terface_method: Callable, attributes:
dict)

This auxiliary class is used to record calls to the event interface

Event Logging

These are the components of the event system:

StepEventLog Logs all events dispatched by the environment during
one step.

EpisodeEventLog Keeps logs of all events dispatched by an environment
during one episode.

KpiCalculator Interface for calculating KPI metrics.
LogEventsWriterRegistry Handles registration of event log writers.
LogEventsWriter Interface for modules writing out the event log data.
LogEventsWriterTSV Writes event logs into TSV files.
EventRow Represents one row into the output file for the

LogEventsWriterTSV .
SimpleEventLoggingSetup Simple setup for logging of environment events with all

their attributes.
ObservationEvents Event topic class with logging statistics based only on

observations, therefore applicable to any valid rein-
forcement learning environment.

DiscreteActionEvents Event topic class with logging statistics based only on
discrete (categorical) actions, therefore applicable to
any valid reinforcement learning environment.

ContinuousActionEvents Event topic class with logging statistics based only on
continuous actions (box spaces), therefore applicable to
any valid reinforcement learning environment.

create_categorical_plot Checks the type of value and calls the correct plotting
function accordingly.

create_histogram Creates simple matplotlib histogram of value.
create_relative_bar_plot Counts the categories in value and prepares a relative

bar plot of these.
create_violin_distribution Creates simple matplotlib violin plot of value.

76 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/abc.html#abc.ABC
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict

Maze

StepEventLog

class maze.core.log_events.step_event_log.StepEventLog(env_time: int, events: Op-
tional[maze.core.events.event_collection.EventCollection]
= None)

Logs all events dispatched by the environment during one step.

Parameters

• env_time – Internal time of the environment, if available. Otherwise Step ID.

• events – Events dispatched by an environment during one particular step.

append(event: maze.core.events.event_record.EventRecord)
Append a new event record to the step log.

extend(event_list: Iterable[maze.core.events.event_record.EventRecord])
Append a list of events record to the step log.

EpisodeEventLog

class maze.core.log_events.episode_event_log.EpisodeEventLog(episode_id: str)
Keeps logs of all events dispatched by an environment during one episode.

Parameters episode_id – ID of the episode the events belong to

query_events(event_spec: Union[Callable, Iterable[Callable]])→ Iterable
Query events across the whole episode.

Parameters event_spec – Specification of events to query

Returns List of events from this episode that

KpiCalculator

class maze.core.log_events.kpi_calculator.KpiCalculator
Interface for calculating KPI metrics. If available, is called by statistics wrapper at the end of each episode.

abstract calculate_kpis(episode_event_log: maze.core.log_events.episode_event_log.EpisodeEventLog,
last_maze_state: Any)→ Dict[str, float]

Compute KPIs for the current episode.

This is expected to be called once at the end of the episode, if statistics logging is enabled.

Parameters

• episode_event_log – Log of events recorded during the past episode.

• last_maze_state – State of the environment at the end of the episode

Returns Values of KPI metrics in the format {kpi_name: kpi_value}

1.4. API Documentation 77

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

LogEventsWriterRegistry

class maze.core.log_events.log_events_writer_registry.LogEventsWriterRegistry
Handles registration of event log writers.

Registered writers will be forwarded episode event log data at the end of each episode.

classmethod record_event_logs(episode_event_log: maze.core.log_events.episode_event_log.EpisodeEventLog)
→ None

Write event log data through all registered event log writers.

Parameters episode_event_log – Log of recorded environment events.

classmethod register_writer(writer: maze.core.log_events.log_events_writer.LogEventsWriter)
→ None

Register a writer. Each writer will receive all globally recorded event logs.

Parameters writer – Event log writer to register.

LogEventsWriter

class maze.core.log_events.log_events_writer.LogEventsWriter
Interface for modules writing out the event log data.

Implement this interface for any custom event data logging.

abstract write(episode_event_log: maze.core.log_events.episode_event_log.EpisodeEventLog)
→ None

Write out provided episode data (into a file, DB etc.)

Parameters episode_event_log – Log of the episode events.

LogEventsWriterTSV

class maze.core.log_events.log_events_writer_tsv.LogEventsWriterTSV(log_dir:
Union[str,
path-
lib.Path]
= Posix-
Path('event_logs'))

Writes event logs into TSV files. Each event type has its own file. Each event record has associated episode ID
and step number.

Parameters log_dir – Where event logs should be logged.

write(episode_event_log: maze.core.log_events.episode_event_log.EpisodeEventLog)→ None
Write out provided episode data in to TSV files.

78 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

EventRow

class maze.core.log_events.log_events_writer_tsv.EventRow(episode_id: str,
env_time: Op-
tional[int], attributes:
dict)

Represents one row into the output file for the LogEventsWriterTSV .

The purpose of this class is to keep event record attributes together with its episode and step IDs.

Parameters

• episode_id – ID of the episode the event was generated in

• env_time – What time the event was generated in (either internal env time, or ID of the
step)

• attributes – Event attributes dict

SimpleEventLoggingSetup

class maze.core.log_events.log_events_utils.SimpleEventLoggingSetup(env:
maze.core.wrappers.log_stats_wrapper.LogStatsWrapper)

Simple setup for logging of environment events with all their attributes.

Events will be logged into CSV files in “event_logs” directory.

Parameters env – Env to log events from (needs to be wrapper in LogEventsWrapper)

ObservationEvents

class maze.core.log_events.observation_events.ObservationEvents
Event topic class with logging statistics based only on observations, therefore applicable to any valid reinforce-
ment learning environment.

observation_original(step_key: str, name: str, value: int)
observation seen and dimensionality of observation space

observation_processed(step_key: str, name: str, value: int)
observation seen and dimensionality of observation space

DiscreteActionEvents

class maze.core.log_events.action_events.DiscreteActionEvents
Event topic class with logging statistics based only on discrete (categorical) actions, therefore applicable to any
valid reinforcement learning environment.

action(substep: str, name: str, value: int, action_dim: int)
action taken and dimensionality of discrete action space

1.4. API Documentation 79

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

ContinuousActionEvents

class maze.core.log_events.action_events.ContinuousActionEvents
Event topic class with logging statistics based only on continuous actions (box spaces), therefore applicable to
any valid reinforcement learning environment.

action(substep: str, name: str, value: int)
action taken and shape of box action space

create_categorical_plot

class maze.core.log_events.log_create_figure_functions.create_categorical_plot(value:
Union[List[Tuple[int,
int]],
List[int],
List[float]])

Checks the type of value and calls the correct plotting function accordingly.

Parameters value – Output of an reducer function

Returns plt.figure that contains a bar plot

create_histogram

class maze.core.log_events.log_create_figure_functions.create_histogram(value)
Creates simple matplotlib histogram of value.

Parameters value – output of an event

Returns plt.figure that contains a bar plot

create_relative_bar_plot

class maze.core.log_events.log_create_figure_functions.create_relative_bar_plot(value:
List[Tuple[int,
int]])

Counts the categories in value and prepares a relative bar plot of these.

Parameters value – List of Tuples of (action, action_dim)

Returns plt.figure that contains a bar plot

create_violin_distribution

class maze.core.log_events.log_create_figure_functions.create_violin_distribution(value:
List[numpy.ndarray])

Creates simple matplotlib violin plot of value.

Parameters value – output of an event (expected to be a list of numpy vectors)

Returns plt.figure that contains a bar plot

80 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

Statistics Logging

These are the components of the statistics logging system:

LogStatsEnv Interface to access logging statistics generated by the
environment.

LogStatsWriterConsole Log statistics writer implementation for the console,
mainly for debugging purposes.

LogStatsWriterTensorboard Log statistics writer implementation for Tensorboard.
LogStatsLevel Log statistics aggregation levels.
LogStatsConsumer An interface to receive log statistics.
LogStatsAggregator Complements the event system by providing aggrega-

tion functionality.
LogStatsWriter A minimal interface concrete log statistics writers must

implement.
GlobalLogState Internal class that encapsulates the global state of the

logging system.
LogStatsLogger Auxiliary class returned by get_stats_logger.
register_log_stats_writer Set the concrete writer implementation that will receive

all successive statistics logging.
log_stats Helper function.
increment_log_step Notifies the logging system that the current step is fin-

ished.
get_stats_logger Creates an object that can be used to pipe LogStatAg-

gregator instances with the logging writers.
define_step_stats Event method decorator, defines a new step statistics

calculation for this event.
define_episode_stats Event method decorator, defines a new episode statistics

calculation for this event.
define_epoch_stats Event method decorator, defines a new epoch statistics

calculation for this event.
define_stats_grouping Event method decorator, defines a grouping of all calcu-

lated statistics by an attribute.
define_plot Event method decorator, defines a plot.
histogram the histogram reducer function
LogStatsValue Basic data structure for log statistics
LogStatsGroup Basic data structure for log statistics
LogStatsKey Basic data structure for log statistics
LogStats Basic data structure for log statistics

LogStatsEnv

class maze.core.log_stats.log_stats_env.LogStatsEnv
Interface to access logging statistics generated by the environment. Most envs won’t implement this directly,
but use the LogStatsWrapper to implement this functionality.

abstract get_stats(level: maze.core.log_stats.log_stats.LogStatsLevel) →
maze.core.log_stats.log_stats.LogStatsAggregator

Get access to the statistics aggregator, which can be used to receive the latest statistics dictionary (via
last_stats()) or to register log consumers.

Parameters level – The statistics aggregation level (LogStatsLevel.STEP, LogStat-
sLevel.EPISODE or LogStatsLevel.EPOCH)

1.4. API Documentation 81

Maze

Returns The statistics aggregator

abstract get_stats_value(event: Callable, level: maze.core.log_stats.log_stats.LogStatsLevel,
name: Optional[str] = None) → Union[int, float, numpy.ndarray,
dict]

Obtain a single value from the statistics dict.

Parameters

• event – The event interface method of the value in question

• level – The statistics aggregation level (LogStatsLevel.STEP, LogStatsLevel.EPISODE
or LogStatsLevel.EPOCH)

• name – The output_name of the statistics in case it has been specified in maze.core.
log_stats.event_decorators.define_epoch_stats()

Returns The statistics dictionary

abstract write_epoch_stats()→ None
Use this if you do not want to wait for the next maze.core.log_stats.log_stats.
increment_log_step() call to update the epoch statistics.

This can be useful in a training scenario to get the results of the evaluation rollouts immediately, instead
of waiting for the next log step increment to occur.

LogStatsWriterConsole

class maze.core.log_stats.log_stats_writer_console.LogStatsWriterConsole
Log statistics writer implementation for the console, mainly for debugging purposes. Creates table-like console
text in a fixed width layout.

write(path: str, step: int, stats: Dict[maze.core.log_stats.log_stats.LogStatsKey, Union[int, float,
numpy.ndarray, dict]])→ None

see LogStatsWriter.write

LogStatsWriterTensorboard

class maze.core.log_stats.log_stats_writer_tensorboard.LogStatsWriterTensorboard(log_dir:
str,
ten-
sor-
board_render_figure:
bool)

Log statistics writer implementation for Tensorboard. :param log_dir: log_dir for TensorBoard :param tensor-
board_render_figure: Indicates whether to visualize the actions taken in TensorBoard.

on_log_step_increment()
Hooked into increment_log_step, called by the logging system immediately before the increment.

write(path: str, step: int, stats: Dict[maze.core.log_stats.log_stats.LogStatsKey, Union[int, float,
numpy.ndarray, dict]])→ None

LogStatsWriter.write implementation

82 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

LogStatsLevel

class maze.core.log_stats.log_stats.LogStatsLevel(value)
Log statistics aggregation levels.

EPISODE = 2
aggregator receives step statistics and produces episode statistics

EPOCH = 3
aggregator receives episode statistics and produces epoch statistics

STEP = 1
aggregator receives individual events and produces step statistics

LogStatsConsumer

class maze.core.log_stats.log_stats.LogStatsConsumer
An interface to receive log statistics. Implemented by the LogStatAggregator class to receive logs from the
subjacent aggregator.

abstract receive(stat: Dict[maze.core.log_stats.log_stats.LogStatsKey, Union[int, float,
numpy.ndarray, dict]])

Receive a statistics object from an aggregator. This might be called multiple times in case we consume
statistics from multiple LogStatAggregator objects.

Parameters stat – The statistics dictionary

LogStatsAggregator

class maze.core.log_stats.log_stats.LogStatsAggregator(level:
maze.core.log_stats.log_stats.LogStatsLevel,
*consumers:
maze.core.log_stats.log_stats.LogStatsConsumer)

Complements the event system by providing aggregation functionality. How the events are aggregated is speci-
fied by the event interface decorators (see event_decorators.py).

Note that the statistics calculation for episode aggregators will automatically be triggered on every incre-
ment_log_step() call.

add_event(event_record: maze.core.events.event_record.EventRecord)→ None
Add a recorded event to this aggregator.

The aggregator only keeps track of event/attributes with relevant statistics decoration, everything else is
filtered out immediately.

Parameters event_record –

add_value(event: Callable, value: Union[int, float, numpy.ndarray, dict], name: str = None, group:
Tuple[Union[str, int], . . .] = None)→ None

Add a single value to this aggregator.

Parameters

• event – The event interface method the given value belongs to

• value – The value to add

• name – There may be multiple statistics per event, the name is used to refer to a specific
statistics built from the event records

1.4. API Documentation 83

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

• group – The group identifier if this event is grouped

create_event_topic(interface_class: Type[T])→ T
Provide an event topic proxy analogous to the event proxies provided by EventSystem/PubSub. But in
contrast to the event system, this can be used to inject statistics also on the step, episode and epoch level.

Note that different LogStatsLevel result in different behaviour of the returned event topic proxies!

Parameters interface_class – The class object of an abstract interface that defines the
events as methods.

Returns A proxy object, dynamically derived from the passed interface_class, that can be used
to trigger events.

last_stats: Optional[LogStats]
keep track of the previous statistics, required e.g. for cumulative statistics

last_stats_step: Optional[int]
step number of the last statistics calculation

receive(stats: Dict[maze.core.log_stats.log_stats.LogStatsKey, Union[int, float, numpy.ndarray,
dict]])→ None

Receive statistics from the subjacent aggregation level

Parameters stats – The statistics dictionary

reduce()→ Dict[maze.core.log_stats.log_stats.LogStatsKey, Union[int, float, numpy.ndarray, dict]]
Consume the aggregated values by - calculating the statistics - sending the statistics to the consumers -
resetting the values for the next aggregation step

:return Returns the statistics object. The same object has been sent to the consumers.

register_consumer(consumer: maze.core.log_stats.log_stats.LogStatsConsumer)→ None
Register a new consumer to receive the readily calculated statistics of this aggregator.

Parameters consumer – The consumer to add

LogStatsWriter

class maze.core.log_stats.log_stats.LogStatsWriter
A minimal interface concrete log statistics writers must implement.

abstract write(path: Optional[str], step: int, stats: Dict[maze.core.log_stats.log_stats.LogStatsKey,
Union[int, float, numpy.ndarray, dict]])→ None

Write the passed statistics dictionary to the log.

Parameters

• path – This can be a path-like string to organize the log into different sections.

• step – The step number associated with the passed statistics

• stats – The statistics dictionary

:return None

84 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

GlobalLogState

class maze.core.log_stats.log_stats.GlobalLogState
Internal class that encapsulates the global state of the logging system.

hook_on_log_step: List[Callable] = [<bound method LogStatsAggregator._hook_on_log_step of <maze.core.log_stats.log_stats.LogStatsAggregator object>>]
list of functions called on increment_log_step()

LogStatsLogger

class maze.core.log_stats.log_stats.LogStatsLogger(path: Optional[str])
Auxiliary class returned by get_stats_logger.

receive(stat: Dict[maze.core.log_stats.log_stats.LogStatsKey, Union[int, float, numpy.ndarray,
dict]])→ None

Implementation of LogStatsConsumer interface

register_log_stats_writer

class maze.core.log_stats.log_stats.register_log_stats_writer(writer:
maze.core.log_stats.log_stats.LogStatsWriter)

Set the concrete writer implementation that will receive all successive statistics logging.

Parameters writer – The writer to be used by the logging system

log_stats

class maze.core.log_stats.log_stats.log_stats(stats: Dict[maze.core.log_stats.log_stats.LogStatsKey,
Union[int, float, numpy.ndarray, dict]],
path: Optional[str])

Helper function.

Parameters

• stats – The statistics dictionary

• path – This can be a path-like string to organize the log into different sections.

increment_log_step

class maze.core.log_stats.log_stats.increment_log_step
Notifies the logging system that the current step is finished.

1.4. API Documentation 85

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

get_stats_logger

class maze.core.log_stats.log_stats.get_stats_logger(path: Optional[str] = None)
Creates an object that can be used to pipe LogStatAggregator instances with the logging writers.

Example usage: >>> logger = get_stats_logger(“eval”) >>> aggregator = LogStatsAggrega-
tor(LogStatsLevel.STEP, logger) >>> aggregator.reduce() # calculate the statistics and sent it to the registered
logging writers

Parameters path – The optional path to prefix the logging tags

Returns

define_step_stats

class maze.core.log_stats.event_decorators.define_step_stats(reduce_function:
Op-
tional[Callable],
input_name: Op-
tional[str] = None,
output_name:
Optional[str] =
None, group_by:
Optional[str] =
None, cumulative:
bool = False)

Event method decorator, defines a new step statistics calculation for this event.

Input all events in a single step (and side-loaded step statistics, see ‘reduce_function’ set to None)

Output step statistics

Parameters

• reduce_function – A function that takes a list of values and returns the calculated
statistics. In the special case that we do not want to calculate the statistics from events, but
have the statistics result already available for the current step, the reduce_function can be
set to None. Then the event can be invoked at most once per step to side-load the result.
This is very useful to log state information, e.g. the inventory size.

• input_name – The name of the event attribute (=keyword attribute), whose values are to
be passed to the reduce function. Can be omitted, for which there are two reasons

– no naming necessary, there is only a single event attribute

– we want all event attributes to be passed to the reduce_function as dictionaries (or our
reduce function does not care, e.g. counting the number of events with len)

• output_name – The name of the statistics, how it should be passed to the logger resp. the
following aggregation stage. Will be the same as input_name if None is provided.

• group_by – If there are multiple groups defined for an event, per default the statistics is
collected at the ‘cell’ level. This option allows to project the statistics onto a single group
(e.g. for inventory statistics we might define location and product as groups, but prefer to
monitor statistics grouped only per product, regardless of location and vice versa)

• cumulative – Enable cumulative statistics

Returns The decorator function

86 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

define_episode_stats

class maze.core.log_stats.event_decorators.define_episode_stats(reduce_function:
Callable, in-
put_name:
Optional[str]
= None, out-
put_name:
Optional[str]
= None,
group_by:
Optional[str]
= None, cumu-
lative: bool =
False)

Event method decorator, defines a new episode statistics calculation for this event.

Input all step statistics in the current episode and side-loaded episode statistics, see ‘re-
duce_function’ set to None

Output episode statistics

Parameters

• reduce_function – A function that takes a list of values and returns the calculated
statistics

• input_name – The name of the step statistics, whose values are to be passed to the reduce
function. Can be omitted, for which there are two reasons

– no naming necessary, there is only a single step statistics available

– we want all step statistics to be passed to the reduce_function as dictionaries (or our
reduce function does not care, e.g. counting with len)

• output_name – The name of the generated episode statistics, how it should be passed to
the logger respective the following aggregation stage. Will be the same as input_name if
None is provided.

• group_by – If there are multiple groups defined for an event, per default the statistics is
collected at the ‘cell’ level. This option allows to project the statistics onto a single group
(e.g. for inventory statistics we might define location and product as groups, but prefer to
monitor statistics grouped only per product, regardless of location and vice versa)

• cumulative – Enable cumulative statistics

Returns The decorator function

1.4. API Documentation 87

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

define_epoch_stats

class maze.core.log_stats.event_decorators.define_epoch_stats(reduce_function:
Callable, in-
put_name:
Optional[str]
= None, out-
put_name:
Optional[str] =
None, group_by:
Optional[str]
= None, cumu-
lative: bool =
False)

Event method decorator, defines a new epoch statistics calculation for this event.

Input All episode statistics of the current epoch and side-loaded epoch statistics, see ‘re-
duce_function’ set to None

Output Epoch statistics

Parameters

• reduce_function – A function that takes a list of values and returns the calculated
statistics

• input_name – The name of the event attribute (=keyword attribute), whose values are to
be passed to the reduce function. Can be omitted, for which there are two reasons

– no naming necessary, there is only a single epoch statistics available

– we want all episode statistics to be passed to the reduce_function as dictionaries (or our
reduce function does not care, e.g. counting with len)

• output_name – The name of the generated epoch statistics, how it should be passed to
the logger respective the following aggregation stage. Will be the same as input_name if
None is provided.

• group_by – If there are multiple groups defined for an event, per default the statistics is
collected at the ‘cell’ level. This option allows to project the statistics onto a single group
(e.g. for inventory statistics we might define location and product as groups, but prefer to
monitor statistics grouped only per product, regardless of location and vice versa)

• cumulative – Enable cumulative statistics

Returns The decorator function

define_stats_grouping

class maze.core.log_stats.event_decorators.define_stats_grouping(*group_by:
str)

Event method decorator, defines a grouping of all calculated statistics by an attribute.

Parameters group_by – Name of the event attribute(s)

Returns The decorator function

88 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

define_plot

class maze.core.log_stats.event_decorators.define_plot(create_figure_function:
Callable, input_name: str =
None)

Event method decorator, defines a plot. :return: The decorator function

histogram

class maze.core.log_stats.reducer_functions.histogram(values:
Union[List[Union[float, int]],
List[List[Union[float, int]]],
List[collections.abc.ValuesView]])

the histogram reducer function We decided to return the full list, rather then binning the values (e.g. collec-
tions.Counter), so that float values are supported as well.

Parameters values – A list of values collected by the event system

Returns returns the same list of values so that a histogram can then be build from it

LogStatsValue

maze.core.log_stats.log_stats.LogStatsValue

LogStatsGroup

maze.core.log_stats.log_stats.LogStatsGroup

LogStatsKey

class maze.core.log_stats.log_stats.LogStatsKey(event, output_name, group)
Basic data structure for log statistics

property event
Alias for field number 0

property group
Alias for field number 2

property output_name
Alias for field number 1

1.4. API Documentation 89

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/collections.abc.html#collections.abc.ValuesView

Maze

LogStats

maze.core.log_stats.log_stats.LogStats

1.4.4 Rendering

These are interfaces, classes and utility functions for the rendering system:

Renderer Interface for renderers of individual environments.
StepStatsRenderer Simple statistics rendering based on episode event logs.
EventStatsRenderer Renders customizable statistics on top of event logs.
NotebookEventLogsViewer Event logs viewer for Jupyter Notebooks, built using

ipython widgets.
NotebookTrajectoryViewer Trajectory viewer for Jupyter Notebooks, built using

ipython widgets.
KeyboardControlledTrajectoryViewer Render trajectory data with the possibility to browse

back and forward through the episode steps using key-
board.

RendererArg Interface for classes exposing arguments available at
renderers.

IntRangeArg Represents an argument which can take on a value of
integer in a particular range.

OptionsArrayArg Represents an argument where a single value can be
chosen from an array of allowed options.

Renderer

class maze.core.rendering.renderer.Renderer
Interface for renderers of individual environments.

Renders state of one particular step – based only on current state.

static arguments()→ List[maze.core.rendering.renderer_args.RendererArg]
List the additional arguments that the renderer supports (beyond maze_state and maze_action), if any.

Exposing available argument options like this makes it possible to create appropriate user controls when
controlling the renderer in interactive settings (e.g., using widgets in a Jupyter Notebook).

Note:

Note that the types and names of arguments returned are expected to be the same across all possible env
configurations. What can change are the available values, which then are expected to stay the same for a
whole episode.

Example of this are drivers in a vehicle routing env. If you would like to display a detail of the driver, a
driver_id argument can be exposed. It will always be named driver_id and be of the same type, but across
different episodes, the number of drivers (i.e. allowed range of the argument) might differ. It will always
stay fixed during a whole episode though.

Returns List of renderer argument objects.

abstract render(maze_state: Any, maze_action: Optional[Any], events:
maze.core.log_events.step_event_log.StepEventLog, **kwargs)→ None

Render the current state as a matplotlib figure.

Note that the maze_action is optional – it is None for the last (terminal) state in the episode!

90 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

Parameters

• maze_state – State to render.

• maze_action – MazeAction to render. Should be the MazeAction derived from the
state to render (provided above)

• events – Events dispatched by the env during the last step (i.e. when the given state was
produced)

• kwargs – Any additional arguments that the renderer accepts and exposes

StepStatsRenderer

class maze.core.rendering.step_stats_renderer.StepStatsRenderer
Simple statistics rendering based on episode event logs.

Suitable e.g. for ad-hoc plotting of statistics for the current episode during rollout.

static render_stats(episode_event_log: maze.core.log_events.episode_event_log.EpisodeEventLog,
event_name: str = 'BaseEnvEvents.reward', group_by: Optional[str] =
None, aggregation_func: Optional[Callable] = None, metric: str = 'value',
cumulative: bool = True)

Queries the event log for the given events, then aggregates them and plots them according to the provided
options. By default, a cumulative reward is plotted.

Parameters

• episode_event_log – The episode event log to draw events from.

• event_name – Name of the event to plot.

• group_by – Attribute of the event that the events should be grouped by when aggregat-
ing.

• aggregation_func – Function to aggregate the metric with.

• metric – The metric to plot.

• cumulative – If true, a cumulative sum of the metric is performed (after aggregation).

EventStatsRenderer

class maze.core.rendering.events_stats_renderer.EventStatsRenderer
Renders customizable statistics on top of event logs.

This renderer provides a central rendering functionality for event log data. Elementary customizability is offered
(e.g. simple aggregation etc.). For more complex operations with the data, it is advised to work with the TSV
event logs directly.

AGGREGATION_FUNCS = ['mean', 'sum', 'min', 'max', 'count']
Aggregation functions to offer to the user. Recognized as strings by pandas.

POST_PROCESSING_FUNCS = ['cumsum']
Post-processing functions to offer to the user. Recognized as strings by pandas.

close()
Close the stats figure if one has been created.

1.4. API Documentation 91

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

render_current_episode_stats(episode_event_log: maze.core.log_events.episode_event_log.EpisodeEventLog,
event_name: str = 'BaseEnvEvents.reward', metric_name: str
= 'value', aggregation_func: Optional[Union[str, Callable]]
= None, group_by: str = None, post_processing_func:
Optional[Union[str, Callable]] = 'cumsum')

Render event stats from episode log of currently running episode.

Creates a new figure if needed.

Parameters

• episode_event_log – Episode event log to render events from

• event_name – Name of the even the even log corresponds to

• metric_name – Metric to use (one of the event attributes, e.g. “n_items” – depends on
the event type)

• aggregation_func – Optionally, specifies how to aggregate the metric on step level,
i.e. when there are multiple same events dispatched during the same step.

• group_by – Optionally, another of event attributes to group by on the step level (e.g.
“product_id”)

• post_processing_func – Optionally, a function to post-process the data (“cumsum”
is often used)

static render_timeline_stat(df: pandas.DataFrame, event_name: str = 'BaseEn-
vEvents.reward', metric_name: str = 'value', aggregation_func:
Optional[Union[str, Callable]] = None, group_by: str = None,
post_processing_func: Optional[Union[str, Callable]] = 'cum-
sum')

Render event statistics from a data frame according to the supplied options.

Does not create a figure, renders into the currently active ax.

Parameters

• df – Event log to render statistics from

• event_name – Name of the even the even log corresponds to

• metric_name – Metric to use (one of the event attributes, e.g. “n_items” – depends on
the event type)

• aggregation_func – Optionally, specifies how to aggregate the metric on step level,
i.e. when there are multiple same events dispatched during the same step.

• group_by – Optionally, another of event attributes to group by on the step level (e.g.
“product_id”)

• post_processing_func – Optionally, a function to post-process the data (“cumsum”
is often used)

92 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

NotebookEventLogsViewer

class maze.core.rendering.notebook_event_logs_viewer.NotebookEventLogsViewer(event_logs_dir_path:
Union[str,
path-
lib.Path])

Event logs viewer for Jupyter Notebooks, built using ipython widgets.

Usage: Inside a Jupyter Notebook, initialize the viewer with path to event logs directory, then call build().

This viewer offers elementary rendering functionality for event logs collected during environment rollout. Event
logs are expected to be passed in as a set of TSV with filenames corresponding to event names, the default format
as written out using the LogEventsWriterTSV .

The logs will be passed and a set of widgets will be shown, offering options on which event to display and what
event attribute to use as a metric.

Statics are always aggregated on episode level – the timeline displays mean value along with standard deviation
(displayed as a ribbon).

Optionally, events can be grouped by another attribute (e.g., distribution center ID in multi-echelon inventory
environment) and aggregated on step level – this way, we can show e.g. mean value of items stored by each
distribution center across all the episodes. This can be configured using the widgets as well.

Param event_logs_dir_path: Path to directory where the event logs are stored.

build()→ None
Build the interactive viewer. Expected to be called in a Jupyter notebook after initialization.

render(event_path, **kwargs)→ None
Refresh the rendered view. Called by ipywidgets on widget update.

update_column_options(metadata: Dict[str, Any])
Called by ipywidgets interact module when the user selects a different event to display. Loads attributes
available for this event and updates the metric and group_by widget options accordingly.

NotebookTrajectoryViewer

class maze.core.rendering.notebook_trajectory_viewer.NotebookTrajectoryViewer(episode_record:
maze.core.trajectory_recorder.episode_record.EpisodeRecord)

Trajectory viewer for Jupyter Notebooks, built using ipython widgets.

Displays trajectory data for the given episode as an interactive view, where the step ID and any additional
arguments exposed by the renderer can be interactively set. The data is rendered using the renderer recorded in
the episode record.

Parameters episode_record – Trajectory data to render.

build()→ None
Build and show the interactive widgets.

Builds all the widgets (one for step ID, then one for each additional argument accepted by the renderer)
and activates them using the interact function. Expected to be called from a cell in a Jupyter notebook.

render(step_id, **kwargs)→ None
Render the view for the given step ID, with the given additional parameters.

Usually, this method is not called directly – it is expected to be called by ipython widgets.

Parameters

• step_id – ID of the step to display

1.4. API Documentation 93

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

• kwargs – Any additional arguments the renderer accepts

KeyboardControlledTrajectoryViewer

class maze.core.rendering.keyboard_controlled_trajectory_viewer.KeyboardControlledTrajectoryViewer(episode_record:
maze.core.trajectory_recorder.episode_record.EpisodeRecord,
ren-
derer:
maze.core.rendering.renderer.Renderer,
ini-
tial_step_index:
int
=
0,
ren-
derer_kwargs:
Dict[str,
Any]
=
None)

Render trajectory data with the possibility to browse back and forward through the episode steps using keyboard.

This is the simplest form of interactive rendering of episode trajectory, useful for example when rendering the
trajectory ad hoc while the environment is still running. For more comfortable rendering of trajectory data inside
of a Jupyter Notebook, use NotebookTrajectoryViewer.

Note:

The keyboard controls might not work well when run outside of terminal.

If running this through PyCharm, the “Emulate terminal in output console” options in Run/Debug configurations
needs to be set to true, otherwise the keys will not be picked up correctly and this run loop will crash.

Also, the console needs to be active dor the keys to be picked up.

render()
Run the interactive rendering loop. Waits for user input (right or left arrow), updates the step index ac-
cordingly and triggers the redraw through the renderer.

RendererArg

class maze.core.rendering.renderer_args.RendererArg(name: str, title: str)
Interface for classes exposing arguments available at renderers.

Example such argument: ID of a distribution center that we want to render a detail of.

Subclasses of this class should also define how to convert these argument definitions into interactive controls
that can be displayed to the user (currently only ipython widgets, though more types of controls can be added in
the future).

Parameters

• name – Name of the argument as it should be passed to the renderer

• title – Name of the argument as it should be displayed to the user

abstract create_widget()
Build an ipython widget that can be used to control the value of this argument by the user.

94 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

IntRangeArg

class maze.core.rendering.renderer_args.IntRangeArg(name: str, title: str, min_value:
int, max_value: int)

Represents an argument which can take on a value of integer in a particular range.

Parameters

• min_value – Min allowed value

• max_value – Max allowed value

create_widget()
Build an int slider widget.

OptionsArrayArg

class maze.core.rendering.renderer_args.OptionsArrayArg(name: str, title: str, op-
tions: List[Union[Any, Tu-
ple[str, Any]]])

Represents an argument where a single value can be chosen from an array of allowed options.

Parameters options – Array of allowed options. Either just a simple array of allowed ar-
gument values, or an array of tuples, each in the form of (value_displayed_to_the_user,
value_passed_to_renderer)

create_widget()
Build a dropdown widget.

1.4.5 Trajectory Recorder

These are interfaces, classes and utility functions for recording trajectory data:

TrajectoryWriterRegistry Handles registration of trajectory data writers.
StepRecord Keeps trajectory data for one step.
EpisodeRecord Records and keeps trajectory record data for a complete

episode.
TrajectoryWriter Interface for modules serializing the trajectory data.
TrajectoryWriterFile Simple trajectory data writer.
SimpleTrajectoryRecordingSetup Simple setup for trajectory data recording.
MonitoringSetup Simple setup for environment monitoring.

TrajectoryWriterRegistry

class maze.core.trajectory_recorder.trajectory_writer_registry.TrajectoryWriterRegistry
Handles registration of trajectory data writers. Registered writers will be forwarded episode trajectory data at
the end of each episode.

classmethod record_trajectory_data(episode_record: maze.core.trajectory_recorder.episode_record.EpisodeRecord)
→ None

Record trajectory data through all registered trajectory data writers.

Parameters episode_record – Record of episode trajectory data to log.

classmethod register_writer(writer: maze.core.trajectory_recorder.trajectory_writer.TrajectoryWriter)
→ None

1.4. API Documentation 95

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

Register a writer. Each writer will receive all globally recorded trajectory data.

Parameters writer – Trajectory writer to register.

StepRecord

class maze.core.trajectory_recorder.step_record.StepRecord(maze_state: Any,
maze_action:
Optional[Any],
step_event_log:
maze.core.log_events.step_event_log.StepEventLog,
reward: Union[float,
numpy.ndarray,
Any], done: Op-
tional[bool], info:
Optional[Dict], seri-
alizable_components:
Dict[str, Any])

Keeps trajectory data for one step. Note: It should be ensured that the components are not going to change
after assigning them to the step record (e.g. by copying the relevant ones, especially state and the serializable
components).

Parameters

• maze_state – Current MazeState of the env.

• maze_action – Last MazeAction taken by the agent.

• step_event_log – Log of events dispatched by the env during the last step.

• reward – Reward as returned by the environment (either scalar or distributed reward)

• done – Dictionary indicating whether the environment or particular agents are done

• info – Dictionary with any other supplementary information provided by the env

• serializable_components – dict of all serializable components as provided by the
env - e.g. { “demand_generator” : demand_generator_object }

property env_time
Internal time of environment (if available) that this record belongs to.

property step_id
ID of the step this record belongs to.

EpisodeRecord

class maze.core.trajectory_recorder.episode_record.EpisodeRecord(episode_id:
str, ren-
derer: Op-
tional[maze.core.rendering.renderer.Renderer]
= None)

Records and keeps trajectory record data for a complete episode.

Parameters

• episode_id – ID of the episode. Can be used to link trajectory data from event logs and
other sources.

96 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• renderer – Where available, the renderer object should be associated to the episode
record. This ensures correct configuration of the renderer (with respect to env configura-
tion for this episode), and makes it easier to instantiate the correct renderer for displaying
the trajectory data.

TrajectoryWriter

class maze.core.trajectory_recorder.trajectory_writer.TrajectoryWriter
Interface for modules serializing the trajectory data.

Implement this interface for any custom trajectory data logging.

abstract write(episode_record: maze.core.trajectory_recorder.episode_record.EpisodeRecord)→
None

Write out provided episode data (into a file, DB etc.)

Parameters episode_record – Record of the episode trajectory data.

TrajectoryWriterFile

class maze.core.trajectory_recorder.trajectory_writer_file.TrajectoryWriterFile(log_dir:
Union[str,
path-
lib.Path]
=
Posix-
Path('trajectory_data'))

Simple trajectory data writer. Serializes trajectory data for each episode into a separate file using Pickle.

Suitable for smaller scale rollouts or debugging.

Parameters log_dir – Where trajectory data should be logged.

write(episode_record: maze.core.trajectory_recorder.episode_record.EpisodeRecord)→ None
Write episode trajectory data to a file using pickle.

Parameters episode_record – Episode trajectory data

SimpleTrajectoryRecordingSetup

class maze.core.trajectory_recorder.trajectory_utils.SimpleTrajectoryRecordingSetup(env)
Simple setup for trajectory data recording.

Trajectory data will be serialized into trajectory_data directory, one file per episode.

MonitoringSetup

class maze.core.trajectory_recorder.monitoring_setup.MonitoringSetup(env: T,
log_dir:
str =
'.')

Simple setup for environment monitoring.

Logs the following data:

• Epoch statistics (console + Tensorboard format)

1.4. API Documentation 97

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• Environment events (TSV files, one per event type)

• Trajectory data

1.4.6 General and Rollout Runners

This page contains the reference documentation for all kinds of runners.

Overview

• General Runners

• Rollout Runners

General Runners

These are the basic interfaces, classes and utility functions of runners:

Runner Runner interface for running Maze from CLI.
maze_run Run a CLI task based on the provided configuration.

Runner

class maze.runner.Runner
Runner interface for running Maze from CLI.

This class will be instantiated from the config obtained from hydra (cfg.runner). Then, the run method will be
called, being supplied the whole hydra config (cfg).

abstract run(cfg: omegaconf.DictConfig)→ None
Perform the run.

Parameters cfg – Config of the hydra job.

maze_run

class maze.maze_cli.maze_run(cfg: omegaconf.DictConfig)
Run a CLI task based on the provided configuration.

A runner object is instantiated according to the config (cfg.runner) and it is then handed the whole configuration
object (cfg). Runners can perform various tasks such as rollouts, trainings etc.

Parameters cfg – Hydra configuration for the rollout.

98 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

Rollout Runners

These are interfaces, classes and utility functions for rollout runners:

Here can find the documentation for training runners.

RolloutRunner General abstract class for rollout runners.
SequentialRolloutRunner Runs rollout in the local process.
ParallelRolloutRunner Runs rollout in multiple processes in parallel.
ParallelRolloutWorker Class encapsulating functionality performed in worker

processes.
EpisodeRecorder Keeps the statistics and event logs from the last episode

so that it can then be shipped to the main process.
EpisodeStatsReport Tuple for passing episode stats from workers to the main

process.
ExceptionReport Tuple for passing error reports from the workers to the

main process.

RolloutRunner

class maze.core.rollout.rollout_runner.RolloutRunner(n_episodes: int,
max_episode_steps: int,
record_trajectory: bool,
record_event_logs: bool)

General abstract class for rollout runners.

Offers general structure, plus a couple of helper methods for env instantiation and performing the rollout.

Parameters

• n_episodes – Count of episodes to run

• max_episode_steps – Count of steps to run in each episode (if environment returns
done, the episode will be finished earlier though)

• record_trajectory – Whether to record trajectory data

• record_event_logs – Whether to record event logs

static init_env_and_agent(env_config: omegaconf.DictConfig, wrappers_config:
Union[List[Union[None, str, Mapping[str, Any], Any]],
Mapping[str, Union[None, str, Mapping[str, Any], Any]]],
max_episode_steps: int, agent_config: omegaconf.DictConfig,
input_dir: str) -> (<class 'maze.core.env.base_env.BaseEnv'>,
<class 'maze.core.agent.policy.Policy'>)

Build the environment (including wrappers) and agent according to given configuration.

Parameters

• env_config – Environment config

• wrappers_config – Wrapper config

• max_episode_steps – Max number of steps per episode to limit the env for

• agent_config – Policies config

• input_dir – Directory to load the model from

Returns Tuple of (instantiated environment, instantiated agent)

1.4. API Documentation 99

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

run(cfg: omegaconf.DictConfig)→ None
Parse the supplied Hydra config and perform the run.

static run_interaction_maze(env: maze.core.env.structured_env.StructuredEnv, agent:
maze.core.agent.policy.Policy, n_episodes: int, render: bool =
False, episode_end_callback: Callable = None)→ None

Helper function for running the agent-environment interaction loop for specified number of steps and
episodes.

Parameters

• env – Environment to run

• agent – Agent to use

• n_episodes – Count of episodes to perform

• render – Whether to render the environment after every step

• episode_end_callback – If supplied, this will be executed after each episode to
notify the observer

abstract run_with(env: Union[None, str, Mapping[str, Any], Any], wrappers:
Union[List[Union[None, str, Mapping[str, Any], Any]], Mapping[str,
Union[None, str, Mapping[str, Any], Any]]], agent: Union[None, str,
Mapping[str, Any], Any])→ None

Run the rollout with the given env, wrappers and agent configuration. A helper method to make rollouts
easily runnable also directly from python, without building the hydra config object.

Note that this method is designed to run only once – if you call it from python directly (and not using
Hydra from command line as is the main use case), you should respect this. Otherwise, you might get
weird behavior especially from the statistics and events logging system, as the rollout runners register their
own stats and event writers (so you might get duplicate stats) and order of operations sometimes matters
(especially with parallel rollouts, where we do not want to carry the writers into child processes).

Parameters

• env – Env config or object

• wrappers – Wrappers config (see WrapperRegistry)

• agent – Agent config or object

SequentialRolloutRunner

class maze.core.rollout.sequential_rollout_runner.SequentialRolloutRunner(n_episodes:
int,
max_episode_steps:
int,
record_trajectory:
bool,
record_event_logs:
bool,
ren-
der:
bool)

Runs rollout in the local process. Useful for short rollouts or debugging.

Trajectory, event logs and stats are recorded into the working directory managed by hydra (provided that the
relevant wrappers are present.)

100 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

Parameters

• n_episodes – Count of episodes to run

• max_episode_steps – Count of steps to run in each episode (if environment returns
done, the episode will be finished earlier though)

• record_trajectory – Whether to record trajectory data

• record_event_logs – Whether to record event logs

run_with(env: Union[None, str, Mapping[str, Any], Any], wrappers: Union[List[Union[None, str,
Mapping[str, Any], Any]], Mapping[str, Union[None, str, Mapping[str, Any], Any]]], agent:
Union[None, str, Mapping[str, Any], Any])

Run the rollout sequentially in the main process.

update_progress()
Called on episode end to update a simple progress indicator.

ParallelRolloutRunner

class maze.core.rollout.parallel_rollout_runner.ParallelRolloutRunner(n_episodes:
int,
max_episode_steps:
int,
n_processes:
int,
record_trajectory:
bool,
record_event_logs:
bool)

Runs rollout in multiple processes in parallel.

Both agent and environment are run in multiple instances across multiple processes. While this greatly speeds
up the rollout, the memory consumption might be high for large environments and agents.

Trajectory recording, event logging, as well as stats logging are supported. Trajectory logging happens in the
child processes. Event logs and stats are shipped back to the main process so that they can be handled together
there. This allows monitoring of progress and calculation of summary stats across all the processes.

(Note that the relevant wrappers need to be present in the config for the trajectory/event/stats logging to work.
Data are logged into the working directory managed by hydra.)

In case of early rollout termination using a keyboard interrupt, data for all episodes completed till that point will
be preserved (= written out). Graceful shutdown will be attempted, including calculation of statistics across the
episodes completed before the rollout was terminated.

Parameters

• n_episodes – Count of episodes to run

• max_episode_steps – Count of steps to run in each episode (if environment returns
done, the episode will be finished earlier though)

• n_processes – Count of processes to spread the rollout across.

• record_trajectory – Whether to record trajectory data

• record_event_logs – Whether to record event logs

1.4. API Documentation 101

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

run_with(env: Union[None, str, Mapping[str, Any], Any], wrappers: Union[List[Union[None, str,
Mapping[str, Any], Any]], Mapping[str, Union[None, str, Mapping[str, Any], Any]]], agent:
Union[None, str, Mapping[str, Any], Any])

Run the parallel rollout in multiple worker processes.

ParallelRolloutWorker

class maze.core.rollout.parallel_rollout_runner.ParallelRolloutWorker
Class encapsulating functionality performed in worker processes.

static run(env_config: omegaconf.DictConfig, wrapper_config: omegaconf.DictConfig,
agent_config: omegaconf.DictConfig, n_episodes: int, max_episode_steps: int,
record_trajectory: bool, input_directory: str, reporting_queue: multiprocess-
ing.context.BaseContext.Queue)→ None

Build the environment and run the rollout for the specified number of episodes.

Parameters

• env_config – Hydra configuration of the environment to instantiate.

• wrapper_config – Hydra configuration of environment wrappers.

• agent_config – Hydra configuration of agent’s policies.

• n_episodes – Number of episodes to run (in total, will be split across processes)

• max_episode_steps – Max number of steps per episode to perform (episode might
end earlier if env returns done)

• record_trajectory – Whether to record trajectory data.

• input_directory – Directory to load the model from.

• reporting_queue – Queue for passing the stats and event logs back to the main pro-
cess after each episode

EpisodeRecorder

class maze.core.rollout.parallel_rollout_runner.EpisodeRecorder
Keeps the statistics and event logs from the last episode so that it can then be shipped to the main process.

get_last_episode_data() → Tuple[Dict[maze.core.log_stats.log_stats.LogStatsKey,
Union[int, float, numpy.ndarray, dict]],
maze.core.log_events.episode_event_log.EpisodeEventLog]

Get the stats and event log from the last episode.

Returns Tuple of (episode stats, event log)

receive(stat: Dict[maze.core.log_stats.log_stats.LogStatsKey, Union[int, float, numpy.ndarray,
dict]])→ None

Receive the statistics from the env and store them.

write(episode_event_log: maze.core.log_events.episode_event_log.EpisodeEventLog)→ None
Receive the event logs from the env and store them.

102 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

EpisodeStatsReport

class maze.core.rollout.parallel_rollout_runner.EpisodeStatsReport(stats,
event_log)

Tuple for passing episode stats from workers to the main process.

property event_log
Alias for field number 1

property stats
Alias for field number 0

ExceptionReport

class maze.core.rollout.parallel_rollout_runner.ExceptionReport(exception,
traceback)

Tuple for passing error reports from the workers to the main process.

property exception
Alias for field number 0

property traceback
Alias for field number 1

1.4.7 Policies, Critics and Agents

This page contains the reference documentation for policies, critics and agents.

maze.core.agent

Policies:

FlatPolicy Generic flat policy interface.
Policy Structured policy class designed to work with structured

environments.
TorchPolicy Encapsulates multiple torch policies along with a dis-

tribution mapper for training and rollouts in structured
environments.

DefaultPolicy Encapsulates one or more policies identified by policy
IDs.

RandomPolicy Implements a random structured policy.
DummyCartPolePolicy Dummy structured policy for the CartPole env.
SerializedTorchPolicy Structured policy used for rollouts of trained models.

1.4. API Documentation 103

Maze

FlatPolicy

class maze.core.agent.flat_policy.FlatPolicy
Generic flat policy interface.

abstract compute_action(observation: Dict[str, numpy.ndarray], deterministic: bool) →
Dict[str, Union[int, numpy.ndarray]]

Pick the next action based on the current observation.

Parameters

• observation – Current observation of the environment

• deterministic – Specify if the action should be computed deterministically

Returns Next action to take

abstract compute_top_action_candidates(observation: Dict[str, numpy.ndarray],
num_candidates: int) → Tu-
ple[Sequence[Dict[str, Union[int,
numpy.ndarray]]], Sequence[float]]

Get the top :num_candidates actions as well as the probabilities, q-values, .. leading to the decision.

Parameters

• observation – Current observation of the environment

• num_candidates – The number of actions that should be returned

Returns a tuple of sequences, where the first sequence corresponds to the possible actions, the
other sequence to the associated probabilities

Policy

class maze.core.agent.policy.Policy
Structured policy class designed to work with structured environments. (see StructuredEnv).

It encapsulates policies and queries them for actions according to the provided policy ID.

abstract compute_action(observation: Dict[str, numpy.ndarray], maze_state: Optional[Any],
policy_id: Union[str, int] = None, deterministic: bool = False) →
Dict[str, Union[int, numpy.ndarray]]

Query a policy that corresponds to the given ID for action.

Parameters

• observation – Current observation of the environment

• maze_state – Current state representation of the environment (only provided if
needs_state() returns True)

• policy_id – ID of the policy to query (does not have to be provided if policies dict
contains only 1 policy)

• deterministic – Specify if the action should be computed deterministically

Returns Next action to take

104 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

abstract compute_top_action_candidates(observation: Dict[str, numpy.ndarray],
num_candidates: int, maze_state: Op-
tional[Any], policy_id: Union[str, int]
= None, deterministic: bool = False)
→ Tuple[Sequence[Dict[str, Union[int,
numpy.ndarray]]], Sequence[float]]

Get the top :num_candidates actions as well as the probabilities, q-values, .. leading to the decision.

Parameters

• observation – Current observation of the environment

• num_candidates – The number of actions that should be returned

• maze_state – Current state representation of the environment (only provided if
needs_state() returns True)

• policy_id – ID of the policy to query (does not have to be provided if policies dict
contains only 1 policy)

• deterministic – Specify if the action should be computed deterministically

Returns a tuple of sequences, where the first sequence corresponds to the possible actions, the
other sequence to the associated scores (e.g, probabilities or Q-values).

abstract needs_state()→ bool
The policy implementation declares if it operates solely on observations (needs_state returns False) or if it
also requires the state object in order to compute the action.

Note that requiring the state object comes with performance implications, especially in multi-node dis-
tributed workloads, where both objects would need to be transferred over the network.

TorchPolicy

class maze.core.agent.torch_policy.TorchPolicy(networks: Mapping[Union[str, int],
torch.nn.Module], distribution_mapper:
maze.distributions.distribution_mapper.DistributionMapper,
device: str)

Encapsulates multiple torch policies along with a distribution mapper for training and rollouts in structured
environments.

Parameters

• networks – Mapping of policy networks to encapsulate

• distribution_mapper – Distribution mapper associated with the policy mapping.

• device – Device the policy should be located on (cpu or cuda)

compute_action(observation: Dict[str, numpy.ndarray], maze_state: Optional[Any] = None, pol-
icy_id: Union[str, int] = None, deterministic: bool = False)→ Dict[str, Union[int,
numpy.ndarray]]

implementation of Policy

compute_action_distribution(observation: Any, policy_id: Union[str, int] = None)→ Any
Query the policy corresponding to the given ID for the action distribution.

compute_action_logits_entropy_dist(policy_id: Union[str, int], observation:
Dict[Union[str, int], torch.Tensor], determinis-
tic: bool, temperature: float) → Tuple[Dict[str,
torch.Tensor], Dict[str, torch.Tensor], torch.Tensor,
maze.distributions.dict.DictProbabilityDistribution]

1.4. API Documentation 105

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Compute action for the given observation and policy ID and return it together with the logits.

Parameters

• policy_id – ID of the policy to query (does not have to be provided if policies dict
contain only 1 policy

• observation – Current observation of the environment

• deterministic – Specify if the action should be computed deterministically

• temperature – Controls the sampling behaviour. * 1.0 corresponds to unmodified
sampling * smaller than 1.0 concentrates the action distribution towards deterministic sam-
pling

Returns Tuple of (action, logits_dict, entropy, prob_dist)

compute_action_with_logits(observation: Any, policy_id: Union[str, int] = None, determinis-
tic: bool = False)→ Tuple[Any, Dict[str, torch.Tensor]]

Compute action for the given observation and policy ID and return it together with the logits.

Parameters

• observation – Current observation of the environment

• policy_id – ID of the policy to query (does not have to be provided if policies dict
contain only 1 policy

• deterministic – Specify if the action should be computed deterministically

Returns Tuple of (action, logits_dict)

compute_logits_dict(observation: Any, policy_id: Union[str, int] = None) → Dict[str,
torch.Tensor]

Get the logits for the given observation and policy ID.

Parameters

• observation – Observation to return probability distribution for

• policy_id – Policy ID this observation corresponds to

Returns Logits dictionary

compute_top_action_candidates(observation: Dict[str, numpy.ndarray], num_candidates:
int, maze_state: Optional[Any] = None, policy_id:
Union[str, int] = None, deterministic: bool = False) →
Tuple[Sequence[Dict[str, Union[int, numpy.ndarray]]], Se-
quence[float]]

implementation of Policy

eval()→ None
implementation of TorchModel

load_state_dict(state_dict: Dict)→ None
implementation of TorchModel

logits_dict_to_distribution(logits_dict: Dict[str, torch.Tensor], temperature: float = 1.0)
Helper function for creation of a dict probability distribution from the given logits dictionary.

Parameters

• logits_dict – A logits dictionary [action_head: action_logits] to parameterize the
distribution from.

106 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

• temperature – Controls the sampling behaviour. * 1.0 corresponds to unmodified
sampling * smaller than 1.0 concentrates the action distribution towards deterministic sam-
pling

Returns (DictProbabilityDistribution) the respective instance of a DictProbabilityDistribution.

needs_state()→ bool
This policy does not require the state() object to compute the action.

parameters()→ List[torch.Tensor]
implementation of TorchModel

state_dict()→ Dict
implementation of TorchModel

to(device: str)→ None
implementation of TorchModel

train()→ None
implementation of TorchModel

DefaultPolicy

class maze.core.agent.default_policy.DefaultPolicy(policies: Union[List[Union[None,
str, Mapping[str, Any], Any]],
Mapping[str, Union[None, str,
Mapping[str, Any], Any]]])

Encapsulates one or more policies identified by policy IDs.

Parameters policies – Dict of policy IDs and corresponding policies.

compute_action(observation: Dict[str, numpy.ndarray], maze_state: Optional[Any] = None, pol-
icy_id: Union[str, int] = None, deterministic: bool = False)→ Dict[str, Union[int,
numpy.ndarray]]

implementation of Policy interface

compute_top_action_candidates(observation: Dict[str, numpy.ndarray], num_candidates:
int, maze_state: Optional[Any] = None, policy_id:
Union[str, int] = None, deterministic: bool = False) →
Tuple[Sequence[Dict[str, Union[int, numpy.ndarray]]], Se-
quence[float]]

implementation of Policy interface

needs_state()→ bool
This policy does not require the state() object to compute the action.

RandomPolicy

class maze.core.agent.random_policy.RandomPolicy(action_spaces_dict: Dict[Union[str,
int], gym.spaces.Space])

Implements a random structured policy.

Parameters action_spaces_dict – The action_spaces dict from the env

compute_action(observation: Dict[str, numpy.ndarray], maze_state: Optional[Any], policy_id:
Union[str, int] = None, deterministic: bool = False) → Dict[str, Union[int,
numpy.ndarray]]

Query a policy that corresponds to the given ID for action.

1.4. API Documentation 107

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

Parameters

• observation – Current observation of the environment

• maze_state – Current state of the environment (will always be None as needs_state()
returns False)

• policy_id – ID of the policy to query (does not have to be provided if policies dict
contain only 1 policy

• deterministic – Specify if the action should be computed deterministically

Returns Next action to take

compute_top_action_candidates(observation: Dict[str, numpy.ndarray], num_candidates:
int, maze_state: Optional[Any] = None, policy_id:
Union[str, int] = None, deterministic: bool = False) →
Tuple[Sequence[Dict[str, Union[int, numpy.ndarray]]], Se-
quence[float]]

implementation of Policy interface

needs_state()→ bool
This policy does not require the state() object to compute the action.

DummyCartPolePolicy

class maze.core.agent.dummy_cartpole_policy.DummyCartPolePolicy
Dummy structured policy for the CartPole env.

Useful mainly for showcase of the config scheme and for testing.

compute_action(observation: Dict[str, numpy.ndarray], maze_state: Optional[Any] = None, pol-
icy_id: Union[str, int] = None, deterministic: bool = False)→ Dict[str, Union[int,
numpy.ndarray]]

Sample an action.

compute_top_action_candidates(observation: Dict[str, numpy.ndarray], num_candidates:
int, maze_state: Optional[Any] = None, policy_id:
Union[str, int] = None, deterministic: bool = False) →
Tuple[Sequence[Dict[str, Union[int, numpy.ndarray]]], Se-
quence[float]]

implementation of Policy interface

needs_state()→ bool
This policy does not require the state() object to compute the action.

SerializedTorchPolicy

class maze.core.agent.serialized_torch_policy.SerializedTorchPolicy(model:
Union[omegaconf.DictConfig,
Dict],
state_dict_file:
str,
spaces_dict_file:
str, de-
vice:
str)

Structured policy used for rollouts of trained models.

108 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Will build the models based on the model composer and spaces config and set the state of individual policies
according to the state dict dump.

Policies are set to eval mode by default.

Parameters

• model – Model composer configuration

• state_dict_file – Path to dumped state dictionaries of the trained policies

• spaces_dict_file – Path to dumped spaces configuration (action and observation
spaces of the env the policy was trained on, used for model initialization)

Critics:

StateCritic Structured state critic class designed to work with struc-
tured environments.

TorchStateCritic Encapsulates multiple torch state critics for training in
structured environments.

TorchSharedStateCritic One critic is shared across all sub-steps or actors (de-
fault to use for standard gym-style environments).

TorchStepStateCritic Each sub-step or actor gets its individual critic.
TorchDeltaStateCritic First sub step gets a regular critic, subsequent sub-steps

predict a delta w.r.t.
StateActionCritic Structured state action critic class designed to work with

structured environments.
TorchStateActionCritic Encapsulates multiple torch state action critics for train-

ing in structured environments.
TorchSharedStateActionCritic One critic is shared across all sub-steps or actors (de-

fault to use for standard gym-style environments).
TorchStepStateActionCritic Each sub-step or actor gets its individual critic.

StateCritic

class maze.core.agent.state_critic.StateCritic
Structured state critic class designed to work with structured environments. (see StructuredEnv).

It encapsulates state critic and queries them for values according to the provided policy ID.

abstract predict_value(observation: Dict[str, numpy.ndarray], critic_id: Union[int, str]) →
torch.Tensor

Query a critic that corresponds to the given ID for the state value.

Parameters

• observation – Current observation of the environment

• critic_id – The critic id to query

Returns The value for this observation

abstract predict_values(observations: Dict[Union[str, int], Dict[str, numpy.ndarray]])
→ Tuple[Dict[Union[str, int], torch.Tensor], Dict[Union[str, int],
torch.Tensor]]

Query a critic that corresponds to the given ID for the state value.

Parameters observations – Current observation of the environment

Returns Tuple containing the values and detached values

1.4. API Documentation 109

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

TorchStateCritic

class maze.core.agent.torch_state_critic.TorchStateCritic(networks: Map-
ping[Union[str, int],
torch.nn.Module],
num_policies: int,
device: str)

Encapsulates multiple torch state critics for training in structured environments.

Parameters

• networks – Mapping of value functions (critic) to encapsulate.

• num_policies – The number of corresponding policies.

• device – Device the policy should be located on (cpu or cuda)

bootstrap_returns(observations: Dict[Union[str, int], Dict[str, torch.Tensor]], rews:
numpy.ndarray, dones: numpy.ndarray, gamma: float, gae_lambda: float) →
Tuple[Dict[Union[str, int], torch.Tensor], Dict[Union[str, int], torch.Tensor],
Dict[Union[str, int], torch.Tensor]]

Bootstrap returns using the value function.

Useful for example to implement PPO or A2C.

Parameters

• observations – Sub-step observations as tensor dictionary.

• rews – Array holding the per step rewards.

• dones – Array indicating if a step is a done step.

• gamma – Discounting factor

• gae_lambda – Bias vs variance trade of factor for Generalized Advantage Estimator
(GAE)

Returns Tuple containing the computed returns, the predicted values and the detached predicted
values.

compute_return(gamma: float, gae_lambda: float, rewards: numpy.ndarray, values: torch.Tensor,
dones: numpy.ndarray, deltas: torch.Tensor = None)→ torch.Tensor

Compute bootstrapped return from rewards and estimated values.

Parameters

• gamma – Discounting factor

• gae_lambda – Bias vs variance trade of factor for Generalized Advantage Estimator
(GAE)

• rewards – Step rewards with shape (n_steps, n_workers)

• values – Predicted values with shape (n_steps, n_workers)

• dones – Step dones with shape (n_steps, n_workers)

• deltas – Predicted value deltas to previous sub-step with shape (n_steps, n_workers)

Returns Per time step returns.

property device
implementation of TorchModel

110 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

eval()→ None
implementation of TorchModel

load_state_dict(state_dict: Dict)→ None
implementation of TorchModel

abstract property num_critics
Returns the number of critic networks. :return: Number of critic networks.

parameters()→ List[torch.Tensor]
implementation of TorchModel

predict_value(observation: Dict[str, numpy.ndarray], critic_id: Union[int, str])→ torch.Tensor
implementation of StateCritic

state_dict()→ Dict
implementation of TorchModel

to(device: str)→ None
implementation of TorchModel

train()→ None
implementation of TorchModel

TorchSharedStateCritic

class maze.core.agent.torch_state_critic.TorchSharedStateCritic(networks:
Map-
ping[Union[str,
int],
torch.nn.Module],
num_policies:
int, device:
str)

One critic is shared across all sub-steps or actors (default to use for standard gym-style environments). Can be
instantiated via the SharedStateCriticComposer.

property num_critics
implementation of TorchStateCritic

predict_values(observations: Dict[Union[str, int], Dict[str, torch.Tensor]]) → Tu-
ple[Dict[Union[str, int], torch.Tensor], Dict[Union[str, int], torch.Tensor]]

implementation of StateCritic

TorchStepStateCritic

class maze.core.agent.torch_state_critic.TorchStepStateCritic(networks: Map-
ping[Union[str,
int],
torch.nn.Module],
num_policies: int,
device: str)

Each sub-step or actor gets its individual critic. Can be instantiated via the StepStateCriticComposer.

property num_critics
implementation of TorchStateCritic

1.4. API Documentation 111

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

predict_values(observations: Dict[Union[str, int], Dict[str, torch.Tensor]]) → Tu-
ple[Dict[Union[str, int], torch.Tensor], Dict[Union[str, int], torch.Tensor]]

implementation of StateCritic

TorchDeltaStateCritic

class maze.core.agent.torch_state_critic.TorchDeltaStateCritic(networks: Map-
ping[Union[str,
int],
torch.nn.Module],
num_policies:
int, device: str)

First sub step gets a regular critic, subsequent sub-steps predict a delta w.r.t. to the previous critic. Can be
instantiated via the DeltaStateCriticComposer.

property num_critics
implementation of TorchStateCritic

predict_value(observation: Dict[str, numpy.ndarray], critic_id: Union[int, str])→ torch.Tensor
Predictions depend on previous sub-steps, thus this method is not supported in the delta state critic.

predict_values(observations: Dict[Union[str, int], Dict[str, torch.Tensor]]) → Tu-
ple[Dict[Union[str, int], torch.Tensor], Dict[Union[str, int], torch.Tensor]]

implementation of StateCritic

StateActionCritic

class maze.core.agent.state_action_critic.StateActionCritic
Structured state action critic class designed to work with structured environments. (see StructuredEnv).

It encapsulates state critic and queries them for values according to the provided policy ID.

abstract predict_q_values(observations: Dict[Union[str, int], Dict[str, torch.Tensor]],
actions: Dict[Union[str, int], Dict[str, torch.Tensor]],
gather_output: bool) → Dict[Union[str, int],
List[Union[torch.Tensor, Dict[str, torch.Tensor]]]]

Predict the Q value based on the observations and actions.

Parameters

• observations – The observation for the current step.

• actions – The action performed at the current step.

• gather_output – Specify whether to gather the output in the discrete setting.

Returns A list of tensors holding the predicted q value for each critic.

112 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

TorchStateActionCritic

class maze.core.agent.torch_state_action_critic.TorchStateActionCritic(networks:
Map-
ping[Union[str,
int],
torch.nn.Module],
num_policies:
int,
de-
vice:
str,
only_discrete_spaces:
Dict[Union[str,
int],
bool],
ac-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict])

Encapsulates multiple torch state action critics for training in structured environments.

Parameters

• networks – Mapping of value functions (critic) to encapsulate.

• num_policies – The number of corresponding policies.

• device – Device the policy should be located on (cpu or cuda)

• only_discrete_spaces – A dict specifying if the action spaces w.r.t. the step only
hold discrete action spaces.

compute_state_action_value_step(observation: Dict[str, torch.Tensor], action: Dict[str,
torch.Tensor], critic_id: Union[str, int, tuple]) →
List[torch.Tensor]

Predict the value with specified step_key, step_observation and action.

Parameters

• observation – The observation for the current step.

• action – The action performed at the current step.

• critic_id – The current step key of the multi-step env.

Returns A list of tensors holding the predicted q value for each critic.

compute_state_action_values_step(observation: Dict[str, torch.Tensor], critic_id:
Union[str, int, tuple])→ List[Dict[str, torch.Tensor]]

Predict the value with specified step_key, step_observation and action for discrete actions only.

Parameters

• observation – The observation for the current step.

• critic_id – The current step key of the multi-step env.

Returns A list of dicts holding the predicted q value for each action w.r.t. to the critic.

property device
implementation of TorchModel

1.4. API Documentation 113

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#tuple
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#tuple
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

eval()→ None
implementation of TorchModel

load_state_dict(state_dict: Dict)→ None
implementation of TorchModel

abstract property num_critics
Returns the number of critic networks. :return: Number of critic networks.

parameters()→ List[torch.Tensor]
implementation of TorchModel

per_critic_parameters()→ List[List[torch.Tensor]]
Retrieve all trainable critic parameters (to be assigned to optimizers). :return: List of lists holding all
parameters for the base critic corresponding to number of critic per step.

abstract predict_next_q_values(next_observations: Dict[Union[str, int], Dict[str,
torch.Tensor]], next_actions: Dict[Union[str,
int], Dict[str, torch.Tensor]], next_actions_logits:
Dict[Union[str, int], Dict[str, torch.Tensor]],
next_actions_log_probs: Dict[Union[str, int], Dict[str,
torch.Tensor]], alpha: torch.Tensor) → Dict[Union[str,
int], Union[torch.Tensor, Dict[str, torch.Tensor]]]

Predict the target q value for the next step. 𝑉 (𝑠𝑡) := 𝐸𝑎𝑡[𝑄(𝑠𝑡, 𝑎𝑡)𝑙𝑜𝑔((𝑎𝑡|𝑠𝑡))].

Parameters

• next_observations – The next observations.

• next_actions – The next actions sampled from the policy.

• next_actions_logits – The logits of the next actions (only relevantt for the discrete
case).

• next_actions_log_probs – The log probabilities of the actions.

• alpha – The alpha, or entropy coefficient.

Returns A dict w.r.t. the step holding tensors representing the predicted next q value

abstract predict_q_values(observations: Dict[Union[str, int], Dict[str, torch.Tensor]],
actions: Dict[Union[str, int], Dict[str, torch.Tensor]],
gather_output: bool) → Dict[Union[str, int],
List[Union[torch.Tensor, Dict[str, torch.Tensor]]]]

implementation of StateActionCritic

re_init_networks()→ None
Reinitialize all parameters of the network.

state_dict()→ Dict
implementation of TorchModel

to(device: str)→ None
implementation of TorchModel

train()→ None
implementation of TorchModel

update_target_weights(tau: float)→ None
Preform a soft or hard update depending on the tau value chosen. tau==1 results in a hard update

Parameters tau – Parameter weighting the soft update of the target network.

114 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

TorchSharedStateActionCritic

class maze.core.agent.torch_state_action_critic.TorchSharedStateActionCritic(networks:
Map-
ping[Union[str,
int],
torch.nn.Module],
num_policies:
int,
de-
vice:
str,
only_discrete_spaces:
Dict[Union[str,
int],
bool],
ac-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict])

One critic is shared across all sub-steps or actors (default to use for standard gym-style environments). Can be
instantiated via the SharedStateActionCriticComposer.

property num_critics
implementation of TorchStateActionCritic

predict_next_q_values(next_observations: Dict[Union[str, int], Dict[str, torch.Tensor]],
next_actions: Dict[Union[str, int], Dict[str, torch.Tensor]],
next_actions_logits: Dict[Union[str, int], Dict[str, torch.Tensor]],
next_actions_log_probs: Dict[Union[str, int], Dict[str, torch.Tensor]],
alpha: torch.Tensor) → Dict[Union[str, int], Union[torch.Tensor,
Dict[str, torch.Tensor]]]

implementation of TorchStateActionCritic

predict_q_values(observations: Dict[Union[str, int], Dict[str, torch.Tensor]], actions:
Dict[Union[str, int], Dict[str, torch.Tensor]], gather_output: bool) →
Dict[Union[str, int], List[Union[torch.Tensor, Dict[str, torch.Tensor]]]]

implementation of TorchStateActionCritic

1.4. API Documentation 115

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

TorchStepStateActionCritic

class maze.core.agent.torch_state_action_critic.TorchStepStateActionCritic(networks:
Map-
ping[Union[str,
int],
torch.nn.Module],
num_policies:
int,
de-
vice:
str,
only_discrete_spaces:
Dict[Union[str,
int],
bool],
ac-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict])

Each sub-step or actor gets its individual critic. Can be instantiated via the
StepStateActionCriticComposer.

property num_critics
implementation of TorchStateActionCritic

predict_next_q_values(next_observations: Dict[Union[str, int], Dict[str, torch.Tensor]],
next_actions: Dict[Union[str, int], Dict[str, torch.Tensor]],
next_actions_logits: Dict[Union[str, int], Dict[str, torch.Tensor]],
next_actions_log_probs: Dict[Union[str, int], Dict[str, torch.Tensor]],
alpha: torch.Tensor) → Dict[Union[str, int], Union[torch.Tensor,
Dict[str, torch.Tensor]]]

implementation of TorchStateActionCritic

predict_q_values(observations: Dict[Union[str, int], Dict[str, torch.Tensor]], actions:
Dict[Union[str, int], Dict[str, torch.Tensor]], gather_output: bool) →
Dict[Union[str, int], List[Union[torch.Tensor, Dict[str, torch.Tensor]]]]

implementation of TorchStateActionCritic

Models:

TorchModel Base class for any torch model.
TorchActorCritic Encapsulates a structured torch policy and critic for

training actor-critic algorithms in structured environ-
ments.

116 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

TorchModel

class maze.core.agent.torch_model.TorchModel(device: str)
Base class for any torch model.

Parameters device – Device the networks should be located on (cpu or cuda)

property device
Returns the device the networks are located on.

abstract eval()→ None
Set all networks to eval mode.

abstract load_state_dict(state_dict: Dict)→ None
Set state dict of all encapsulated networks. :param state_dict: The torch state dictionary.

property num_params
Returns overall number of network parameters.

abstract parameters()→ List[torch.Tensor]
Returns all parameters of all networks.

abstract state_dict()→ Dict
Return state dict composed of state dicts of all encapsulated networks.

abstract to(device: str)→ None
Move all networks to the specified device. :param device: The target device.

abstract train()→ None
Set all networks to training mode.

TorchActorCritic

class maze.core.agent.torch_actor_critic.TorchActorCritic(policy:
maze.core.agent.torch_policy.TorchPolicy,
critic:
Union[maze.core.agent.torch_state_critic.TorchStateCritic,
maze.core.agent.torch_state_action_critic.TorchStateActionCritic],
device: str)

Encapsulates a structured torch policy and critic for training actor-critic algorithms in structured environments.

Parameters

• policy – A structured torch policy for training in structured environments.

• critic – A structured torch critic for training in structured environments.

• device – Device the model (networks) should be located on (cpu or cuda)

property device
implementation of TorchModel

eval()→ None
implementation of TorchModel

load_state_dict(state_dict: Dict)→ None
implementation of TorchModel

parameters()→ List[torch.Tensor]
implementation of TorchModel

1.4. API Documentation 117

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

state_dict()→ Dict
implementation of TorchModel

to(device: str)
implementation of TorchModel

train()→ None
implementation of TorchModel

1.4.8 Agent Integration

This page contains the reference documentation for the Maze agent integration components.

AgentExecution Executes the provided policies in an Agent Integration
setting.

AgentIntegration Encapsulates an agent, space interfaces and a stack of
wrappers, to make the agent’s MazeActions accessible
to an external env.

ActionCandidates Action object for encapsulation of multiple action ob-
jects along with their respective probabilities.

MazeActionCandidates MazeAction object for encapsulation of multiple Maze-
Action objects along with their respective probabilities.

ActionConversionCandidatesInterface Wrapper for action conversion interface when working
with multiple candidate actions/MazeActions.

ExternalCoreEnvRewardAggregator Reward aggregator for summing up rewards that come
as iterables from external env.

ExternalCoreEnv Acts as a CoreEnv in the env stack in agent integration
scenario.

AgentExecution

class maze.core.agent_integration.agent_execution.AgentExecution(env:
maze.core.agent_integration.external_core_env.ExternalCoreEnv,
policy:
maze.core.agent.policy.Policy,
roll-
out_done_event:
thread-
ing.Event,
num_candidates:
int)

Executes the provided policies in an Agent Integration setting.

Policies are executed until the rollout_done event is set, indicating that the rollout has been finished. Then, a
final reset is sent and execution stops. Expected to be run on a separate thread alongside the agent integration
running on the main thread.

Parameters

• env – Environment to step.

• policy – Structured policy working with structured environments.

• rollout_done_event – event indicating that the rollout has been finished.

118 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/threading.html#threading.Event
https://python.readthedocs.io/en/latest/library/threading.html#threading.Event
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

run_rollout_maze()
Step the environment until the rollout is done.

AgentIntegration

class maze.core.agent_integration.agent_integration.AgentIntegration(policy:
maze.core.agent.policy.Policy,
ac-
tion_conversions:
Dict[Union[str,
int],
maze.core.env.action_conversion.ActionConversionInterface],
ob-
serva-
tion_conversions:
Dict[Union[str,
int],
maze.core.env.observation_conversion.ObservationConversionInterface],
num_candidates:
int = 1,
wrap-
per_types:
Op-
tional[List[Type[maze.core.wrappers.wrapper.Wrapper]]]
=
None,
wrap-
per_kwargs:
Op-
tional[List[Dict[str,
Any]]]
=
None,
ren-
derer:
Op-
tional[maze.core.rendering.renderer.Renderer]
=
None)

Encapsulates an agent, space interfaces and a stack of wrappers, to make the agent’s MazeActions accessible to
an external env.

External env should supply states to agent integration object, and can query it for agent MazeActions. The agent
with the supplied policy (or multiple policies) is run on a separate thread.

Note that the two threads (main thread running this wrapper and the second thread running the agent, wrappers
etc.) never run in parallel, i.e. one is always suspended. This is enforced using the queues. Either the main
thread runs and the agent thread is waiting for the state to be passed from the main thread, or the agent thread is
running (computing the MazeAction) and the main thread is waiting until the MazeAction is passed back (then,
the second thread is suspended again until the next state is passed in via the queue).

Queues have max size of one, enforcing that one step can be taken at a time.

Parameters

• policy – Structured policy working with structured environments. When querying for

1.4. API Documentation 119

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

MazeAction, it can be specified what policy should be run (using the actor_id parameter,
first part of which corresponds to the policy_id).

• action_conversions – Action conversion interfaces for the respective policies.

• observation_conversions – Observation interfaces for the respective policies.

• num_candidates – Number of MazeAction candidates to get from the policy. If greater
than 1, will return multiple MazeActions wrapped in MazeActionCandidates

• wrapper_types – Which wrappers should be run as part of the agent’s stack.

• wrapper_kwargs – Optional arguments to pass to the given wrappers on instantiation.

finish_rollout(maze_state: Any, reward: Union[float, numpy.ndarray,
Any], done: bool, info: Dict[Any, Any], events: Op-
tional[List[maze.core.events.event_record.EventRecord]] = None)

Should be called when the rollout is finished. While this has no effect on the provided MazeActions, it
passes an env reset call through the wrapper stack, enabling the wrappers to do any work they normally do
at the end of an episode (like write trajectory data).

Parameters

• maze_state – Final state of the rollout

• reward – Reward for the previous step (can be null in initial step)

• done – Whether the external environment is done

• info – Info dictionary

• events – List of events to be recorded for this step (mainly useful for statistics and event
logs)

get_maze_action(maze_state: Any, reward: Union[None, float, numpy.ndarray, Any],
done: bool, info: Union[None, Dict[Any, Any]], events: Op-
tional[List[maze.core.events.event_record.EventRecord]] = None, actor_id:
Tuple[Union[str, int], int] = 0, 0)

Query the agent for MazeAction derived from the given state.

Passes the state etc. to the agent’s thread, where it is integrated into an ordinary env rollout loop. In the
first step, an env reset call is propagated through the env wrapper stack on agent’s thread.

Parameters

• maze_state – Current state of the environment.

• reward – Reward for the previous step (can be null in initial step)

• done – Whether the external environment is done

• info – Info dictionary

• events – List of events to be recorded for this step (mainly useful for statistics and event
logs)

• actor_id – Optional ID of the actor to run next (comprised of policy_id and agent_id)

Returns MazeAction from the agent

120 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

ActionCandidates

class maze.core.agent_integration.maze_action_candidates.ActionCandidates(candidates_and_probabilities:
Tu-
ple[Sequence[Any],
Se-
quence[float]])

Action object for encapsulation of multiple action objects along with their respective probabilities. Useful when
getting multiple candidate actions from a policy.

Parameters candidates_and_probabilities – a tuple of sequences, where the first se-
quence corresponds to the possible actions, the other sequence to the associated probabilities

MazeActionCandidates

class maze.core.agent_integration.maze_action_candidates.MazeActionCandidates(candidates:
Se-
quence[Any],
prob-
a-
bil-
i-
ties:
Se-
quence[float])

MazeAction object for encapsulation of multiple MazeAction objects along with their respective probabilities.
Useful when working with multiple candidate MazeActions from a policy.

Parameters

• candidates – Candidate MazeActions

• probabilities – Respective probabilities

ActionConversionCandidatesInterface

class maze.core.agent_integration.maze_action_candidates.ActionConversionCandidatesInterface(action_conversion:
maze.core.env.action_conversion.ActionConversionInterface)

Wrapper for action conversion interface when working with multiple candidate actions/MazeActions.

Wraps an action_conversion interface. When action is passed in, uses the wrapped interface to convert all action
candidates to respective MazeActions separately.

Parameters action_conversion – Underlying interface to apply to each candidate

space()→ gym.spaces.space.Space
Return the space defined by the underlying action conversion interface.

space_to_maze(action: maze.core.agent_integration.maze_action_candidates.ActionCandidates,
maze_state: Any)→ maze.core.agent_integration.maze_action_candidates.MazeActionCandidates

Convert an action candidates object (containing multiple candidate actions) into corresponding MazeAc-
tion candidates object.

Parameters

• action – Action candidates object, encapsulating multiple actions.

• maze_state – Current state of the environment.

1.4. API Documentation 121

https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

Returns MazeAction candidate object, encapsulating multiple MazeActions.

ExternalCoreEnvRewardAggregator

class maze.core.agent_integration.external_core_env.ExternalCoreEnvRewardAggregator
Reward aggregator for summing up rewards that come as iterables from external env. Scalar rewards are just
passed through.

get_interfaces()→ List[Type[abc.ABC]]
No event interfaces required.

classmethod to_scalar_reward(reward: Any)→ float
Sum up reward if iterable, otherwise just pass through.

ExternalCoreEnv

class maze.core.agent_integration.external_core_env.ExternalCoreEnv(state_queue:
queue.Queue,
maze_action_queue:
queue.Queue,
roll-
out_done_event:
thread-
ing.Event,
ren-
derer:
Op-
tional[maze.core.rendering.renderer.Renderer])

Acts as a CoreEnv in the env stack in agent integration scenario.

Designed to be run on a separate thread, alongside the agent integration running on the main thread.

Hence, the control flow is: External env (like a Unity env) controlling the agent integration object, which in turn
controls this external core env, which controls the execution of rollout loop by suspending it until the next state
is available from the agent integration object.

Wrappers of this env and the agents acting on top of it see it as ordinary CoreEnv, but no actual logic happens
here – instead, states and associated info are obtained from the agent integration running on the main thread,
and executions produced by the agents are passed back to the agent integration.

During the step function, the execution of this thread is suspended while waiting for the next state from the agent
integration.

Parameters

• state_queue – Queue this core env uses to get states from agent integration object

• maze_action_queue – Queue this core env uses to pass executions back to agent inte-
gration object

• rollout_done_event – Set by the agent integration object. Used for detection of the
end of rollout period.

• renderer – If available, what renderer should be associated with the state data (for ren-
dering, plus to be serialized with trajectory data)

actor_id()→ Tuple[Union[str, int], int]
Current actor ID set by the agent integration.

122 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/abc.html#abc.ABC
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/queue.html#queue.Queue
https://python.readthedocs.io/en/latest/library/queue.html#queue.Queue
https://python.readthedocs.io/en/latest/library/threading.html#threading.Event
https://python.readthedocs.io/en/latest/library/threading.html#threading.Event
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

close()→ None
No cleanup required.

get_kpi_calculator()→ Optional[maze.core.log_events.kpi_calculator.KpiCalculator]
No KPI calculator available.

get_maze_state()→ Any
Return the last state obtained from the external env through agent integration.

get_renderer()→ Optional[maze.core.rendering.renderer.Renderer]
Renderer provided by the agent integration. Might be None if not available.

get_serializable_components()→ Dict[str, Any]
No components required.

get_step_events()→ Iterable[maze.core.events.event_record.EventRecord]
Return events provided by the agent integration.

is_actor_done()→ bool
Whether last actor is done, as set by the agent integration.

reset()→ Any
Reset is expected to be run twice – at the beginning and end of external env rollout.

At the beginning, thread execution is suspended until the initial state is available.

At the end of the rollout, just the last state is returned, as there the reset serves the only purpose of notifying
the wrappers to do their processing of the previous episode. (Also, no more states are available from the
external env at this point.

seed(seed: int)→ None
No seed required – all operation handled by external env.

set_actor_id(new_value: Tuple[Union[str, int], int])
Hook for the agent integration to set actor_id before querying execution.

set_is_actor_done(new_value: bool)
Hook for the agent integration to set the actor_done flag before querying execution.

step(maze_action: Any)→ Tuple[Any, Union[float, numpy.ndarray, Any], bool, Dict[Any, Any]]
Relays the execution back to the agent integration. Then suspends thread execution until the next state is
provided by agent integration.

1.4.9 Perception Module

This page contains the reference documentation of Maze Perception Module.

Overview

• maze.perception.blocks

• maze.perception.builders

• maze.perception.models

• maze.perception.perception_utils

• maze.perception.weight_init

1.4. API Documentation 123

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

maze.perception.blocks

These are basic neural network building blocks and interfaces:

PerceptionBlock Interface for all perception blocks.
ShapeNormalizationBlock Perception block normalizing the input and de-

normalizing the output tensor dimensions.
InferenceBlock An inference block combining multiple perception

blocks into one prediction module.
InferenceGraph Models a perception module inference graph.

PerceptionBlock

class maze.perception.blocks.base.PerceptionBlock(*args: Any, **kwargs: Any)
Interface for all perception blocks. Perception blocks provide a mapping of M input tensors to N output tensors.
Both input and output tensors are stored in a dictionary with unique keys.

Parameters

• in_keys – Keys identifying the input tensors.

• out_keys – Keys identifying the output tensors.

• in_shapes – List of input shapes.

abstract forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
Forward pass of perception block.

Parameters block_input – The block’s input dictionary.

Returns The block’s output dictionary.

get_num_of_parameters()→ int
Calculates the total number of parameters in the model :return: The total number of parameters

out_shapes()→ List[Sequence[int]]
Returns the perception block’s output shape.

Returns a list of output shapes.

ShapeNormalizationBlock

class maze.perception.blocks.shape_normalization.ShapeNormalizationBlock(*args:
Any,
**kwargs:
Any)

Perception block normalizing the input and de-normalizing the output tensor dimensions.

Examples where this interface needs to be implemented are Dense Layers (batch-dim, feature-dim) or Convolu-
tion Blocks (batch-dim, feature-dim, row-dim, column-dim)

Parameters

• in_keys – Keys identifying the input tensors.

• out_keys – Keys identifying the output tensors.

• in_shapes – List of input shapes.

124 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

• in_num_dims – Required number of dimensions for corresponding input.

• out_num_dims – Required number of dimensions for corresponding output.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

abstract normalized_forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
Shape normalized forward pass called in the actual forward pass of this block.

Parameters block_input – The block’s shape normalized input dictionary.

Returns The block’s shape normalized output dictionary.

InferenceBlock

class maze.perception.blocks.inference.InferenceBlock(*args: Any, **kwargs: Any)

An inference block combining multiple perception blocks into one prediction module.

Conditions on using the InferenceBlock object:

1. All keys of the perception_blocks dictionary have to be unique

2. All out_keys used when creating the blocks have to be unique

3. All block keys in the perception_blocks dict have to sub-strings of all their corresponding
out_keys

4. The given in_keys should be a subset of the inputs of the computational graph

5. The given out_keys should be a subset of the outputs of the computational graph

Parameters

• in_keys – Keys identifying the input tensors.

• out_keys – Keys identifying the output tensors.

• in_shapes – List of input shapes.

• perception_blocks – Dictionary of perception blocks.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

InferenceGraph

class maze.perception.blocks.inference.InferenceGraph(inference_block:
maze.perception.blocks.inference.InferenceBlock)

Models a perception module inference graph.

Conditions on using the InferenceGraph object:

1. All keys of the perception_blocks dictionary have to be unique

2. All out_keys used when creating the blocks have to be unique

3. All out_keys of a given block have to be sub-strings of the blocks key in the perception_blocks
dict

Parameters inference_block – An inference perception block to build the graph for.

1.4. API Documentation 125

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

save(name: str, save_path: str)→ str
Construct the network and save it as a pdf.

Parameters

• name – The name of the network to be drawn (used in the tile only).

• save_path – The path the figure should be saved.

Returns Returns the full absolute save path of the pdf.

show(name: str, block_execution: bool)→ None
Construct the graph and show it.

Parameters

• name – The name of the network to be drawn (used in the tile only).

• block_execution – Specify whether the execution should be blocked.

Feed Forward: these are built-in feed forward building blocks:

DenseBlock A block containing multiple subsequent dense layers.
VGGConvolutionBlock A block containing multiple subsequent vgg style con-

volutions.
StridedConvolutionBlock A block containing multiple subsequent strided convo-

lution layers.
GraphConvBlock A block containing multiple subsequent graph convolu-

tion stacks.
GraphAttentionBlock A block containing multiple subsequent graph (multi-

head) attention stacks.

DenseBlock

class maze.perception.blocks.feed_forward.dense.DenseBlock(*args: Any, **kwargs:
Any)

A block containing multiple subsequent dense layers. The block expects the input tensors to have the from
(batch-dim, feature-dim).

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_units – List containing the number of hidden units for hidden layers.

• non_lin – The non-linearity to apply after each layer.

build_layer_dict()→ collections.OrderedDict
Compiles a block-specific dictionary of network layers. This could be overwritten by derived layers (e.g.
to get a ‘BatchNormalizedDenseBlock’).

Returns Ordered dictionary of torch modules [str, nn.Module]

normalized_forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

126 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/collections.html#collections.OrderedDict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

VGGConvolutionBlock

class maze.perception.blocks.feed_forward.vgg_conv.VGGConvolutionBlock(*args:
Any,
**kwargs:
Any)

A block containing multiple subsequent vgg style convolutions.

One convolution stack consists of two subsequent 3x3 convolution layers followed by 2x2 max pooling. The
block expects the input tensors to have the from (batch-dim, channel-dim, row-dim, column-dim).

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_channels – List containing the number of hidden channels for hidden layers.

• non_lin – The non-linearity to apply after each layer.

build_layer_dict()→ collections.OrderedDict
Compiles a block-specific dictionary of network layers. This could be overwritten by derived layers (e.g.
to get a ‘BatchNormalizedConvolutionBlock’).

Returns Ordered dictionary of torch modules [str, nn.Module]

normalized_forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

StridedConvolutionBlock

class maze.perception.blocks.feed_forward.strided_conv.StridedConvolutionBlock(*args:
Any,
**kwargs:
Any)

A block containing multiple subsequent strided convolution layers.

One layer consists of a single strided convolution followed by an activation function. The block expects the
input tensors to have the from (batch-dim, channel-dim, row-dim, column-dim).

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_channels – List containing the number of hidden channels for hidden layers.

• hidden_kernels – List containing the size of the convolving kernels.

• non_lin – The non-linearity to apply after each layer.

• convolution_dimension – Dimension of the convolution to use [1, 2, 3]

• hidden_strides – List containing the strides of the convolutions.

• hidden_dilations – List containing the spacing between kernel elements.

• hidden_padding – List containing the padding added to both sides of the input

1.4. API Documentation 127

https://python.readthedocs.io/en/latest/library/collections.html#collections.OrderedDict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• padding_mode – ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’.

build_layer_dict()→ collections.OrderedDict
Compiles a block-specific dictionary of network layers. This could be overwritten by derived layers (e.g.
to get a ‘BatchNormalizedConvolutionBlock’).

Returns Ordered dictionary of torch modules [str, nn.Module]

normalized_forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

GraphConvBlock

class maze.perception.blocks.feed_forward.graph_conv.GraphConvBlock(*args:
Any,
**kwargs:
Any)

A block containing multiple subsequent graph convolution stacks.

One convolution stack consists of one graph convolution in addition to an activation layer. The block expects
the input tensors to have the form: - Feature matrix: first in_key: (batch-dim, num-of-nodes, feature-dim) -
Adjacency matrix: second in_key: (batch-dim, num-of-nodes, num-of-nodes) (also symmetric) And returns a
tensor of the form (batch-dim, num-of-nodes, feature-out-dim).

Parameters

• in_keys – Two keys identifying the feature matrix and adjacency matrix respectively.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_features – List containing the number of hidden features for hidden layers.

• bias – Specify if a bias should be used at each layer (can be list or single).

• non_lins – The non-linearity/ies to apply after each layer (the same in all layers, or a list
corresponding to each layer).

• node_self_importance – Specify how important a given node is to itself (default
should be 1).

• trainable_node_self_importance – Specify if the node_self_importance should
be a constant or a trainable parameter with init value :param node_self_importance.

• preprocess_adj – Specify whether to preprocess the adjacency, that is compute: adj^
:= D^bar^(-1/2) A^bar D^bar^(-1/2) in every forward pass for the whole bach. If this is
set to false, the already normalized adj^ is expected as an input. Here A^bar := A + I_n *
:param self_importance_scalar, and D^bar_ii := sum_j A^bar_ij.

build_layer_dict()→ collections.OrderedDict
Compiles a block-specific dictionary of network layers.

This could be overwritten by derived layers (e.g. to get a ‘BatchNormalizedConvolutionBlock’).

Returns Ordered dictionary of torch modules [str, nn.Module].

normalized_forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

128 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/collections.html#collections.OrderedDict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/collections.html#collections.OrderedDict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

GraphAttentionBlock

class maze.perception.blocks.feed_forward.graph_attention.GraphAttentionBlock(*args:
Any,
**kwargs:
Any)

A block containing multiple subsequent graph (multi-head) attention stacks.

One convolution stack consists of one graph multi-head attention in addition to an activation layer. The block
expects the input tensors to have the form:

• Feature matrix: first in_key: (batch-dim, num-of-nodes, feature-dim)

• Adjacency matrix: second in_key: (batch-dim, num-of-nodes, num-of-nodes) (also symmetric)

And returns a tensor of the form (batch-dim, num-of-nodes, feature-out-dim).

Parameters

• in_keys – Two keys identifying the feature matrix and adjacency matrix respectively.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_features – List containing the number of hidden features for hidden layers.

• non_lins – The non-linearity/ies to apply after each layer (the same in all layers, or a list
corresponding to each layer).

• n_heads – The number of heads each stack should have. (default suggestion 8)

• attention_alpha – Specify the negative slope of the leakyReLU in each of the attention
layers. parameter with init value :param node_self_importance. (default suggestion 0.2)

• avg_last_head_attentions – Specify whether to average the outputs from the at-
tention head in the last layer of the attention stack. (default suggestion True or n_heads=0
in the last layer)

• attention_dropout – Specify the dropout to be within the layers applied on the com-
puted attention.

build_layer_dict()→ collections.OrderedDict
Compiles a block-specific dictionary of network layers.

This could be overwritten by derived layers (e.g. to get a ‘BatchNormalizedConvolutionBlock’).

Returns Ordered dictionary of torch modules [str, nn.Module].

normalized_forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

Recurrent: these are built-in recurrent building blocks:

LSTMBlock A block containing multiple subsequent LSTM layers
followed by a final time-distributed dense layer with ex-
plicit non-linearity.

1.4. API Documentation 129

https://python.readthedocs.io/en/latest/library/collections.html#collections.OrderedDict
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

LSTMBlock

class maze.perception.blocks.recurrent.lstm.LSTMBlock(*args: Any, **kwargs: Any)
A block containing multiple subsequent LSTM layers followed by a final time-distributed dense layer with
explicit non-linearity.

The block expects the input tensors to have the from (batch-dim, time-dim, feature-dim).

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_size – The number of features in the hidden state.

• num_layers – Number of recurrent layers.

• bidirectional – If True, becomes a bidirectional LSTM.

• non_lin – The non-linearity to apply after the final layer.

normalized_forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

General: these are build-in general purpose building blocks:

FlattenBlock A flattening block.
CorrelationBlock A feature correlation block.
ConcatenationBlock A feature concatenation block.
FunctionalBlock A block applying a custom callable.
GlobalAveragePoolingBlock A global average pooling block.
MaskedGlobalPoolingBlock A block applying masked global pooling.
MultiIndexSlicingBlock A multi-index-slicing block.
RepeatToMatchBlock A repeat-to-match block.
SelfAttentionConvBlock Implementation of a self-attention block as described by

reference: https://arxiv.org/abs/1805.08318
SelfAttentionSeqBlock Implementation of a self-attention block as described by

reference: https://arxiv.org/abs/1706.03762
SliceBlock A slicing block.
ActionMaskingBlock An action masking block.

FlattenBlock

class maze.perception.blocks.general.flatten.FlattenBlock(*args: Any, **kwargs:
Any)

A flattening block.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• num_flatten_dims – the number of dimensions to flatten out (from right).

130 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1706.03762

Maze

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

CorrelationBlock

class maze.perception.blocks.general.correlation.CorrelationBlock(*args: Any,
**kwargs:
Any)

A feature correlation block.

This block takes two feature representation as an input and correlates them along the last dimension. If the blocks
do not have the same number of dimensions additional 1d-dimensions are added to allow for broadcasting.

Parameters

• in_keys – Keys identifying the input tensors.

• out_keys – Keys identifying the output tensors.

• in_shapes – List of input shapes.

• reduce – If True a sum reduction as applied along dim=-1.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

ConcatenationBlock

class maze.perception.blocks.general.concat.ConcatenationBlock(*args: Any,
**kwargs: Any)

A feature concatenation block.

Parameters

• in_keys – Keys identifying the input tensors.

• out_keys – Keys identifying the output tensors.

• in_shapes – List of input shapes.

• concat_dim – The index of the concatenation dimension.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

FunctionalBlock

class maze.perception.blocks.general.functional.FunctionalBlock(*args: Any,
**kwargs:
Any)

A block applying a custom callable. It processes a tensor or sequence of tensors and returns a tensor or sequence
of tensors. If the callable has more than one argument the names of the arguments of the function declaration
have to match the in_keys of the tensors.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

1.4. API Documentation 131

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• in_shapes – List of input shapes.

• func – A simple callable taking a tensor or a sequence of tensors and returning a tensor or
a sequence of tensors.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
Forward pass through the block, applying the callable to the input.

Parameters block_input – The block’s input dictionary.

Returns The block’s output dictionary.

GlobalAveragePoolingBlock

class maze.perception.blocks.general.gap.GlobalAveragePoolingBlock(*args:
Any,
**kwargs:
Any)

A global average pooling block. The block expects the input tensors to have the from (batch-dim, channel-dim,
row-dim, column-dim).

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

normalized_forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

MaskedGlobalPoolingBlock

class maze.perception.blocks.general.masked_global_pooling.MaskedGlobalPoolingBlock(*args:
Any,
**kwargs:
Any)

A block applying masked global pooling. Pooling is applied wrt the mask (in_keys[1]) and the selected pooling
function. That is, in the forward pass the input tensor 1 is iterated over in the first 2 dimensions, where the
elements are selected based on the mask, before applying the pooling function.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• pooling_func – Options: {‘mean’}. So far only mean pooling is supported.

• pooling_dim – The dimension(s) along which the pooling functions get applied.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
Forward pass through the block, iterating over the first 2 dimensions and pooling the rest in dim=0.

Parameters block_input – The block’s input dictionary.

Returns The block’s output dictionary.

132 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

MultiIndexSlicingBlock

class maze.perception.blocks.general.multi_index_slicing.MultiIndexSlicingBlock(*args:
Any,
**kwargs:
Any)

A multi-index-slicing block. This can be used rather than the short hand tensor[. . . ,[a,b]] where [a,b] is the list
given as selection indices.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• select_dim – The dimension to slice from.

• select_idxs – The index or indices to select.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
Forward pass, slicing the input tensor as defined by the selection_dim and select_idxs.

Parameters block_input – The block’s input dictionary.

Returns The block’s output dictionary.

RepeatToMatchBlock

class maze.perception.blocks.general.repeat_to_match.RepeatToMatchBlock(*args:
Any,
**kwargs:
Any)

A repeat-to-match block. This blocks takes two tensors and a dimension index as an input. Then when it’s
forward method is called, it matches the specified the dimension (with :param repeat_at_idx) of the first ten-
sor with the specified dimension (:param repeat_at_idx) of the second tensor. This is done by repeating the
first tensor n times in dimension in dimension :param repeat_at_idx. Here n = tensor_1.shape[repeat_at_idx]
- tensor_0.shape[repeat_at_idx]. As a constraint the first tensor has to satisfy the following condition: ten-
sor_0[repeat_at_idx] == 1

Parameters

• in_keys – The keys identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• repeat_at_idx – Specify the dimension that should be matched between the tensors.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
Forward pass, repeat the first tensor to match the second one in the given dimension

Parameters block_input – The block’s input dictionary.

Returns The block’s output dictionary.

1.4. API Documentation 133

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

SelfAttentionConvBlock

class maze.perception.blocks.general.self_attention_conv.SelfAttentionConvBlock(*args:
Any,
**kwargs:
Any)

Implementation of a self-attention block as described by reference: https://arxiv.org/abs/1805.08318

This block can then be used for 2d data (images), to compute the self attention. If two out_keys are given,
the actual attention is returned from the forward pass with the second out_key. Otherwise only the computed
self-attention is returned

Parameters

• in_keys – Keys identifying the input tensors. First key is self_attention output, second
optional key is attention mask.

• out_keys – Keys identifying the output tensors. First key is self-attention output, second
optional key is attention map.

• in_shapes – List of input shapes.

• embed_dim – The embedding dimensionality, which should be an even fraction of the
input channels.

• add_input_to_output – Specifies weather the computed self attention is added to the
input and returned.

• bias – Specify weather to use a bias in the projections.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

SelfAttentionSeqBlock

class maze.perception.blocks.general.self_attention_seq.SelfAttentionSeqBlock(*args:
Any,
**kwargs:
Any)

Implementation of a self-attention block as described by reference: https://arxiv.org/abs/1706.03762

Within this block the torch nn.MuliheadAttention is used to model the self attention. This block can then be used
for 1d data as well as sequential data, where the embedding dimensionality has to be equal to the last dimension
of the input.

Parameters

• in_keys – Keys identifying the input tensors. First key is self_attention output, second
optional key is attention mask.

• out_keys – Keys identifying the output tensors. First key is self-attention output, second
optional key is attention map.

• in_shapes – List of input shapes.

• embed_dim – Embedding dimension of the model (has to be equal to the last dimension
of the input).

• num_heads – Parallel attention heads.

• dropout – A dropout layer on attn_output_weights.

134 Chapter 1. Getting Started | |

https://arxiv.org/abs/1805.08318
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://arxiv.org/abs/1706.03762

Maze

• add_input_to_output – Specifies weather the computed self attention is added to the
input and returned.

• bias – Add bias as module parameter.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

SliceBlock

class maze.perception.blocks.general.slice.SliceBlock(*args: Any, **kwargs: Any)
A slicing block. This is for example useful for slicing the last time step in recurrent blocks by its index.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• slice_dim – The dimension to slice from.

• slice_idx – The index to slice.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

ActionMaskingBlock

class maze.perception.blocks.general.action_masking.ActionMaskingBlock(*args:
Any,
**kwargs:
Any)

An action masking block.

The block takes two keys as input where the first key contains the logits tensor and the second key contains the
binary mask tensor. Masking is performed by adding the smallest possible float32 number to the logits where
the corresponding mask value is False (0.0).

Parameters

• in_keys – Keys identifying the input tensors.

• out_keys – Keys identifying the output tensors.

• in_shapes – List of input shapes.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

Joint: these are build in joint building blocks combining multiple perception blocks:

FlattenDenseBlock A block containing a flattening stage followed by a
dense layer block.

VGGConvolutionDenseBlock A block containing multiple subsequent vgg style con-
volution stacks followed by flattening and a dense layer
block.

continues on next page

1.4. API Documentation 135

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Table 29 – continued from previous page
VGGConvolutionGAPBlock A block containing multiple subsequent vgg style con-

volution stacks followed by global average pooling.
StridedConvolutionDenseBlock A block containing multiple subsequent strided convo-

lutions followed by flattening and a dense layer block.
LSTMLastStepBlock A block containing a LSTM perception block followed

by a Slicing Block keeping only the output of the final
time step.

FlattenDenseBlock

class maze.perception.blocks.joint_blocks.flatten_dense.FlattenDenseBlock(*args:
Any,
**kwargs:
Any)

A block containing a flattening stage followed by a dense layer block.

For details on flattening see FlattenBlock. For details on dense layers see DenseBlock.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• num_flatten_dims – the number of dimensions to flatten out (from right).

• hidden_units – List containing the number of hidden units for hidden layers.

• non_lin – The non-linearity to apply after each layer.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

VGGConvolutionDenseBlock

class maze.perception.blocks.joint_blocks.vgg_conv_dense.VGGConvolutionDenseBlock(*args:
Any,
**kwargs:
Any)

A block containing multiple subsequent vgg style convolution stacks followed by flattening and a dense layer
block.

For details on the convolution part see VGGConvolutionBlock. For details on flattening see
FlattenBlock. For details on dense layers see DenseBlock.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_channels – List containing the number of hidden channels for hidden layers.

• hidden_units – List containing the number of hidden units for hidden layers.

136 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• non_lin – The non-linearity to apply after each layer.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

VGGConvolutionGAPBlock

class maze.perception.blocks.joint_blocks.vgg_conv_gap.VGGConvolutionGAPBlock(*args:
Any,
**kwargs:
Any)

A block containing multiple subsequent vgg style convolution stacks followed by global average pooling.

For details on the convolution part see VGGConvolutionBlock. For details on gap see
GlobalAveragePoolingBlock.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_channels – List containing the number of hidden channels for hidden layers.

• non_lin – The non-linearity to apply after each layer.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

StridedConvolutionDenseBlock

class maze.perception.blocks.joint_blocks.strided_conv_dense.StridedConvolutionDenseBlock(*args:
Any,
**kwargs:
Any)

A block containing multiple subsequent strided convolutions followed by flattening and a dense layer block.

For details on the convolution part see StridedConvolutionBlock. For details on flattening see
FlattenBlock. For details on dense layers see DenseBlock.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_channels – List containing the number of hidden channels for hidden layers.

• hidden_kernels – List containing the size of the convolving kernels.

• convolution_dimension – Dimension of the convolution to use [1, 2, 3]

• hidden_strides – List containing the strides of the convolutions.

• hidden_dilations – List containing the spacing between kernel elements.

• hidden_padding – List containing the padding added to both sides of the input

• padding_mode – ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’.

1.4. API Documentation 137

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• hidden_units – List containing the number of hidden units for hidden layers.

• non_lin – The non-linearity to apply after each layer.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of ShapeNormalizationBlock interface

LSTMLastStepBlock

class maze.perception.blocks.joint_blocks.lstm_last_step.LSTMLastStepBlock(*args:
Any,
**kwargs:
Any)

A block containing a LSTM perception block followed by a Slicing Block keeping only the output of the final
time step.

For details on flattening see LSTMBlock. For details on dense layers see SliceBlock.

Parameters

• in_keys – One key identifying the input tensors.

• out_keys – One key identifying the output tensors.

• in_shapes – List of input shapes.

• hidden_size – The number of features in the hidden state.

• num_layers – Number of recurrent layers.

• bidirectional – If True, becomes a bidirectional LSTM.

• non_lin – The non-linearity to apply after the final layer.

forward(block_input: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of PerceptionBlock interface

maze.perception.builders

These are template model builders:

BaseModelBuilder Base class for perception default model builders.
ConcatModelBuilder A model builder that first processes individual observa-

tions, concatenates the resulting latent spaces and then
processes this concatenated output to action and value
outputs.

BaseModelBuilder

class maze.perception.builders.base.BaseModelBuilder(modality_config: Dict[str,
Union[str, Dict[str, Any]]], ob-
servation_modality_mapping:
Dict[str, str])

Base class for perception default model builders.

Param modality_config: dictionary mapping perception modalities to blocks and block config pa-
rameters.

138 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Parameters observation_modality_mapping – A mapping of observation keys to percep-
tion modalities.

abstract from_observation_space(observation_space: gym.spaces.Dict) →
maze.perception.blocks.inference.InferenceBlock

Compiles an inference graph for a given observation space.

Only observations which are contained in the self.observation_modalities dictionary are considered.

Parameters observation_space – The respective observation space.

Returns the resulting inference block.

classmethod to_recurrent_gym_space(observation_space: gym.spaces.Dict, rnn_steps:
int)→ gym.spaces.Dict

Converts the given observation space to a recurrent space.

Parameters

• observation_space – The respective observation space.

• rnn_steps – Number of recurrent time steps.

Returns The rnn modified dictionary observation space.

ConcatModelBuilder

class maze.perception.builders.concat.ConcatModelBuilder(modality_config:
Dict[str, Union[str,
Dict[str, Any]]],
observa-
tion_modality_mapping:
Dict[str, str])

A model builder that first processes individual observations, concatenates the resulting latent spaces and then
processes this concatenated output to action and value outputs.

Each input observation is first processed with the specified perception block. The required feature dimensional-
ity after this step is 1D! In a next step the latent representations of the previous step are concatenated along the
last dimension and once more processed with a DenseBlock.

Param modality_config: dictionary mapping perception modalities to blocks and block config pa-
rameters.

Parameters observation_modality_mapping – A mapping of observation keys to percep-
tion modalities.

from_observation_space(observation_space: gym.spaces.Dict) →
maze.perception.blocks.inference.InferenceBlock

implementation of BaseModelBuilder interface

1.4. API Documentation 139

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

maze.perception.models

These are model composers and components:

BaseModelComposer Abstract baseclass and interface definitions for model
composers.

TemplateModelComposer Composes template models from configs.
CustomModelComposer Composes models from explicit model definitions.
SpacesConfig Represents configuration of environment spaces (action

& observation) used for model config.

BaseModelComposer

class maze.perception.models.model_composer.BaseModelComposer(action_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
observa-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
distribu-
tion_mapper_config:
Union[None, str,
Mapping[str,
Any], Any])

Abstract baseclass and interface definitions for model composers.

Model composers encapsulate the set of policy and critic networks along with the distribution mapper.

Parameters

• action_spaces_dict – Dict of sub-step id to action space.

• observation_spaces_dict – Dict of sub-step id to observation space.

• distribution_mapper_config – Distribution mapper configuration.

abstract classmethod check_model_config(model_config: Union[None, str, Mapping[str,
Any], Any])→ None

Asserts the provided model config for consistency. :param model_config: The model config to check.

abstract property critic
The critic model.

property distribution_mapper
The DistributionMapper, mapping the action heads to distributions.

abstract property policy
Policy networks.

save_models()→ None
Save the policies and critics as pdfs.

140 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

TemplateModelComposer

class maze.perception.models.template_model_composer.TemplateModelComposer(action_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
ob-
ser-
va-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
dis-
tri-
bu-
tion_mapper_config:
Union[None,
str,
Map-
ping[str,
Any],
Any],
model_builder:
Union[None,
str,
Map-
ping[str,
Any],
Any,
Type[maze.perception.builders.base.BaseModelBuilder]],
pol-
icy:
Union[None,
str,
Map-
ping[str,
Any],
Any],
critic:
Union[None,
str,
Map-
ping[str,
Any],
Any])

Composes template models from configs.

Parameters

• action_spaces_dict – Dict of sub-step id to action space.

• observation_spaces_dict – Dict of sub-step id to observation space.

• distribution_mapper_config – Distribution mapper configuration.

1.4. API Documentation 141

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• model_builder – The model builder (template) to create the model from.

• policy – Specifies the policy type as a configType. E.g. {‘type’:
maze.perception.models.policies.ProbabilisticPolicyComposer} specifies a probabilis-
tic policy.

• critic – Specifies the critic type as a configType. E.g. {‘type’:
maze.perception.models.critics.StateCriticComposer} specifies the single step state
critic.

classmethod check_model_config(model_config: Union[None, str, Mapping[str, Any], Any])
→ None

Asserts the provided model config for consistency. :param model_config: The model config to check.

property critic
Implementation of the BaseModelComposer interface, returns the value networks.

property policy
Implementation of the BaseModelComposer interface, returns the policy networks.

template_perception_net(observation_space: gym.spaces.Dict) →
maze.perception.blocks.inference.InferenceBlock

Compiles a template perception network for a given observation space.

Parameters observation_space – The observation space tp build the model for.

Returns A Perception Inference Block.

template_policy_net(observation_space: gym.spaces.Dict, action_space: gym.spaces.Dict) →
maze.perception.blocks.inference.InferenceBlock

Compiles a template policy network.

Parameters

• observation_space – The input observations for the perception network.

• action_space – The action space that defines the network action heads.

Returns A policy network (actor) InferenceBlock.

template_q_value_net(observation_space: Optional[gym.spaces.Dict], action_space:
gym.spaces.Dict, only_discrete_spaces: bool, perception_net: Op-
tional[maze.perception.blocks.inference.InferenceBlock] = None) →
maze.perception.blocks.inference.InferenceBlock

Compiles a template state action (Q) value network.

Parameters

• observation_space – The input observations for the perception network.

• action_space – The action space that defines the network action heads.

• perception_net – A initial network to continue from. (e.g. useful for shared weights.
Model building continues from the key ‘latent’.)

• only_discrete_spaces – A dict specifying if the action spaces w.r.t. the step only
hold discrete action spaces.

Returns A q value network (critic) InferenceBlock.

template_value_net(observation_space: Optional[gym.spaces.Dict], perception_net: Op-
tional[maze.perception.blocks.inference.InferenceBlock] = None) →
maze.perception.blocks.inference.InferenceBlock

Compiles a template value network.

Parameters

142 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

• observation_space – The input observations for the perception network.

• perception_net – A initial network to continue from. (e.g. useful for shared weights.
Model building continues from the key ‘latent’.)

Returns A value network (critic) InferenceBlock.

CustomModelComposer

class maze.perception.models.custom_model_composer.CustomModelComposer(action_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
ob-
ser-
va-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
dis-
tri-
bu-
tion_mapper_config:
Union[None,
str,
Map-
ping[str,
Any],
Any],
pol-
icy:
Union[None,
str,
Map-
ping[str,
Any],
Any],
critic:
Union[None,
str,
Map-
ping[str,
Any],
Any])

Composes models from explicit model definitions.

Parameters

• action_spaces_dict – Dict of sub-step id to action space.

• observation_spaces_dict – Dict of sub-step id to observation space.

• distribution_mapper_config – Distribution mapper configuration.

• policy – Mapping of sub-step keys to models.

1.4. API Documentation 143

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• critic – Configuration for the critic composer.

classmethod check_model_config(model_config: Union[None, str, Mapping[str, Any], Any])
→ None

Asserts the provided model config for consistency. :param model_config: The model config to check.

property critic
Return the critic networks.

property policy
Return the policy networks.

SpacesConfig

class maze.perception.models.space_config.SpacesConfig(action_spaces_dict:
Dict[Union[str, int],
gym.spaces.Dict], ob-
servation_spaces_dict:
Dict[Union[str, int],
gym.spaces.Dict])

Represents configuration of environment spaces (action & observation) used for model config.

Spaces config are needed (together with model config and dumped state dict) when loading a trained policy for
rollout.

classmethod load(in_file_path: str)→ maze.perception.models.space_config.SpacesConfig
Load a saved spaces config from a file.

Parameters in_file_path – Where to load the spaces config from.

Returns Loaded spaces config object

save(dump_file_path: str)→ None
Save the spaces config to a file.

Parameters dump_file_path – Where to save the spaces config.

These are maze.perception.models.policies

BasePolicyComposer Interface for policy (actor) network composers.
ProbabilisticPolicyComposer Composes networks for probabilistic policies.

144 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

BasePolicyComposer

class maze.perception.models.policies.base_policy_composer.BasePolicyComposer(action_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
ob-
ser-
va-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
dis-
tri-
bu-
tion_mapper:
maze.distributions.distribution_mapper.DistributionMapper)

Interface for policy (actor) network composers.

Parameters

• action_spaces_dict – Dict of sub-step id to action space.

• observation_spaces_dict – Dict of sub-step id to observation space.

• distribution_mapper – The distribution mapper.

abstract property policy
The policy object

1.4. API Documentation 145

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

ProbabilisticPolicyComposer

class maze.perception.models.policies.probabilistic_policy_composer.ProbabilisticPolicyComposer(action_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
ob-
ser-
va-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
dis-
tri-
bu-
tion_mapper:
maze.distributions.distribution_mapper.DistributionMapper,
net-
works:
Union[List[Union[None,
str,
Map-
ping[str,
Any],
Any]],
Map-
ping[str,
Union[None,
str,
Map-
ping[str,
Any],
Any]]])

Composes networks for probabilistic policies.

Parameters

• action_spaces_dict – Dict of sub-step id to action space.

• observation_spaces_dict – Dict of sub-step id to observation space.

• distribution_mapper – The distribution mapper.

• networks – Policy networks as defined in the config (either list or dictionary of object
params and type).

property policy
implementation of BasePolicyComposer

There are maze.perception.models.critics

BaseStateCriticComposer Interface for critic (value function) network composers.
SharedStateCriticComposer One critic is shared across all sub-steps or actors (de-

fault to use for standard gym-style environments).
StepStateCriticComposer Each sub-step or actor gets its individual critic.

continues on next page

146 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Table 33 – continued from previous page
DeltaStateCriticComposer First sub step gets a regular critic, subsequent sub-steps

predict a delta w.r.t.
StateCriticComposer alias of maze.perception.models.

critics.step_state_critic_composer.
StepStateCriticComposer

BaseStateActionCriticComposer Interface for state action (Q) critic network composers.
SharedStateActionCriticComposer One critic is shared across all sub-steps or actors (de-

fault to use for standard gym-style environments).
StepStateActionCriticComposer Each sub-step or actor gets its individual critic.
StateActionCriticComposer alias of maze.perception.models.critics.

step_state_action_critic_composer.
StepStateActionCriticComposer

BaseStateCriticComposer

class maze.perception.models.critics.base_state_critic_composer.BaseStateCriticComposer(observation_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict])

Interface for critic (value function) network composers.

Parameters observation_spaces_dict – Dict of sub-step id to observation space.

abstract property critic
value networks

SharedStateCriticComposer

class maze.perception.models.critics.shared_state_critic_composer.SharedStateCriticComposer(observation_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
net-
works:
Union[None,
str,
Map-
ping[str,
Any],
Any])

One critic is shared across all sub-steps or actors (default to use for standard gym-style environments).

Instantiates a TorchSharedStateCritic.

Parameters

• observation_spaces_dict – Dict of sub-step id to observation space.

• networks – The single, shared critic network as defined in the config.

property critic
implementation of BaseStateCriticComposer

1.4. API Documentation 147

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

StepStateCriticComposer

class maze.perception.models.critics.step_state_critic_composer.StepStateCriticComposer(observation_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
net-
works:
Union[List[Union[None,
str,
Map-
ping[str,
Any],
Any]],
Map-
ping[str,
Union[None,
str,
Map-
ping[str,
Any],
Any]]])

Each sub-step or actor gets its individual critic.

Instantiates a TorchStepStateCritic.

Parameters

• observation_spaces_dict – Dict of sub-step id to observation space.

• networks – Critics networks as defined in the config (either list or dictionary of object
params and type).

property critic
implementation of BaseStateCriticComposer

148 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

DeltaStateCriticComposer

class maze.perception.models.critics.delta_state_critic_composer.DeltaStateCriticComposer(observation_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
net-
works:
Union[List[Union[None,
str,
Map-
ping[str,
Any],
Any]],
Map-
ping[str,
Union[None,
str,
Map-
ping[str,
Any],
Any]]])

First sub step gets a regular critic, subsequent sub-steps predict a delta w.r.t. to the previous critic.

Instantiates a TorchDeltaStateCritic.

Parameters

• observation_spaces_dict – Dict of sub-step id to observation space.

• networks – The single, shared critic network as defined in the config.

property critic
implementation of BaseStateCriticComposer

StateCriticComposer

maze.perception.models.critics.StateCriticComposer
alias of maze.perception.models.critics.step_state_critic_composer.
StepStateCriticComposer

BaseStateActionCriticComposer

class maze.perception.models.critics.base_state_action_critic_composer.BaseStateActionCriticComposer(observation_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
ac-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict])

Interface for state action (Q) critic network composers.

Parameters

1.4. API Documentation 149

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

• observation_spaces_dict – Dict of sub-step id to observation space.

• action_spaces_dict – Dict of sub-step id to action space.

abstract property critic
value networks

SharedStateActionCriticComposer

class maze.perception.models.critics.shared_state_action_critics_composer.SharedStateActionCriticComposer(observation_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
ac-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
net-
works:
Union[List[Union[None,
str,
Map-
ping[str,
Any],
Any]],
Map-
ping[str,
Union[None,
str,
Map-
ping[str,
Any],
Any]]])

One critic is shared across all sub-steps or actors (default to use for standard gym-style environments).

Instantiates a TorchSharedStateActionCritic.

Parameters

• observation_spaces_dict – Dict of sub-step id to observation space.

• action_spaces_dict – Dict of sub-step id to action space.

• networks – Critics networks as defined in the config (either list or dictionary of object
params and type).

property critic
implementation of BaseStateActionCriticComposer

150 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

StepStateActionCriticComposer

class maze.perception.models.critics.step_state_action_critic_composer.StepStateActionCriticComposer(observation_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
ac-
tion_spaces_dict:
Dict[Union[str,
int],
gym.spaces.Dict],
net-
works:
Union[List[Union[None,
str,
Map-
ping[str,
Any],
Any]],
Map-
ping[str,
Union[None,
str,
Map-
ping[str,
Any],
Any]]])

Each sub-step or actor gets its individual critic.

Instantiates a TorchStepStateActionCritic.

Parameters

• observation_spaces_dict – Dict of sub-step id to observation space.

• action_spaces_dict – Dict of sub-step id to action space.

• networks – Critics networks as defined in the config (either list or dictionary of object
params and type).

property critic
implementation of BaseStateActionCriticComposer

StateActionCriticComposer

maze.perception.models.critics.StateActionCriticComposer
alias of maze.perception.models.critics.step_state_action_critic_composer.
StepStateActionCriticComposer

These are maze.perception.models.build_in models

FlattenConcatBaseNet Base flatten and concatenation model for policies and
critics.

FlattenConcatPolicyNet Flatten and concatenation policy model.
FlattenConcatStateValueNet Flatten and concatenation state value model.

1.4. API Documentation 151

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

FlattenConcatBaseNet

class maze.perception.models.built_in.flatten_concat.FlattenConcatBaseNet(*args:
Any,
**kwargs:
Any)

Base flatten and concatenation model for policies and critics.

Parameters

• obs_shapes – Dictionary mapping of observation names to shapes.

• hidden_units – Dictionary mapping of action names to shapes.

• non_lin – The non-linearity to apply.

FlattenConcatPolicyNet

class maze.perception.models.built_in.flatten_concat.FlattenConcatPolicyNet(*args:
Any,
**kwargs:
Any)

Flatten and concatenation policy model.

Parameters

• obs_shapes – Dictionary mapping of observation names to shapes.

• action_logits_shapes – Dictionary mapping of observation names to shapes.

• hidden_units – Dictionary mapping of action names to shapes.

• non_lin – The non-linearity to apply.

forward(x)
forward pass.

FlattenConcatStateValueNet

class maze.perception.models.built_in.flatten_concat.FlattenConcatStateValueNet(*args:
Any,
**kwargs:
Any)

Flatten and concatenation state value model.

Parameters

• obs_shapes – Dictionary mapping of observation names to shapes.

• hidden_units – Dictionary mapping of action names to shapes.

• non_lin – The non-linearity to apply.

forward(x)
forward pass.

152 Chapter 1. Getting Started | |

Maze

maze.perception.perception_utils

These are some helper functions when working with the perception module:

observation_spaces_to_in_shapes Convert an observation space to the input shapes for the
neural networks

flat_structured_observations Compiles a flat dict from a structured observation nested
dictionary.

convert_to_torch Converts any struct to torch.Tensors.
convert_to_numpy Convert torch to np

observation_spaces_to_in_shapes

class maze.perception.perception_utils.observation_spaces_to_in_shapes(observation_spaces:
Dict[Union[int,
str],
gym.spaces.Dict])

Convert an observation space to the input shapes for the neural networks

Parameters observation_spaces – the observation spaces of a structured Env

Returns the same structure but all the gym spaces are converted to tuples

flat_structured_observations

class maze.perception.perception_utils.flat_structured_observations(structured_obs:
Dict[Union[str,
int],
Dict[str,
torch.Tensor]])

Compiles a flat dict from a structured observation nested dictionary.

Param The structured dictionary of observations.

Returns The flattened observation dictionary.

convert_to_torch

class maze.perception.perception_utils.convert_to_torch(stats: Any, device:
Optional[str], cast:
Optional[torch.dtype],
in_place: Union[bool,
str])

Converts any struct to torch.Tensors.

Parameters

• stats – Any (possibly nested) struct, the values in which will be converted and returned
as a new struct with all leaves converted to torch tensors.

• device – ‘cpu’ or ‘cuda’, or None if it should stay the same

• cast – the type the element should be cast to, or None if it should stay the same

• in_place – specify if the operation should be done in_place, can be bool or ‘try’

1.4. API Documentation 153

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Returns A new struct with the same structure as stats, but with all values converted to torch Tensor
types.

convert_to_numpy

class maze.perception.perception_utils.convert_to_numpy(stats: Any, cast: Op-
tional[numpy.dtype],
in_place: Union[bool,
str])

Convert torch to np

Parameters

• stats – Any (possibly nested) struct, the values in which will be converted and returned
as a new struct with all leaves converted to torch tensors.

• cast – if the element should also be casted to a specific type

• in_place – specify if the operation should be done in_palce, can be bool or ‘try’

Returns A new struct with the same structure as stats, but with all values converted to torch Tensor
types. can be bool or ‘try’

maze.perception.weight_init

These are some helper functions for initializing model weights:

make_module_init_normc Compiles normc weight initialization function initializ-
ing module weights with normc_initializer and biases
with zeros.

compute_sigmoid_bias Compute the bias value for a sigmoid activation function
such as in multi-binary action spaces (Bernoulli distri-
butions).

make_module_init_normc

class maze.perception.weight_init.make_module_init_normc(std: float = 1.0)
Compiles normc weight initialization function initializing module weights with normc_initializer and biases
with zeros.

Parameters std – The standard deviation.

Returns The module initialization function.

154 Chapter 1. Getting Started | |

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

compute_sigmoid_bias

class maze.perception.weight_init.compute_sigmoid_bias(probability: float)
Compute the bias value for a sigmoid activation function such as in multi-binary action spaces (Bernoulli distri-
butions).

Parameters probability – The desired selection probability.

Returns The respective bias value.

1.4.10 Action Spaces and Distributions Module

This page contains the reference documentation of Maze Action Spaces and Distributions Module.

These are interfaces, classes and utility functions:

ProbabilityDistribution Base class for all probability distributions.
TorchProbabilityDistribution Base class for wrapping Torch probability distributions.
DistributionMapper Provides a mapping of spaces and action heads to the

respective probability distributions to be used.
atanh Computes the arc-tangent hyperbolic.
tensor_clamp Clamping with tensor and broadcast support.

ProbabilityDistribution

class maze.distributions.distribution.ProbabilityDistribution
Base class for all probability distributions.

deterministic_sample()→ Any
Draw a deterministic sample from the probability distribution.

Returns deterministic sample tensor.

entropy()→ Any
Calculate the entropy of the probability distribution.

Returns entropy tensor.

kl(other: maze.distributions.distribution.ProbabilityDistribution)→ Any
Calculates the Kullback-Leibler between self and the other probability distribution.

Parameters other – ([float]) the distribution to compare with.

Returns kl tensor.

log_prob(actions: Any)→ Any
Returns the the log likelihood of the provided actions.

actions: the actions. :return: log likelihood tensor.

neg_log_prob(actions: Any)→ Any
Returns the the negative log likelihood of the provided actions.

Parameters actions – the actions.

Returns negative log likelihood tensor.

sample()→ Any
Draw a sample from the probability distribution.

1.4. API Documentation 155

https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

Returns stochastic sample tensor.

TorchProbabilityDistribution

class maze.distributions.torch_dist.TorchProbabilityDistribution(*args,
**kwds)

Base class for wrapping Torch probability distributions.

Parameters

• dist – The torch probability distribution.

• action_space – The gym action space.

entropy()→ torch.Tensor
implementation of ProbabilityDistribution interface

kl(other: maze.distributions.torch_dist.TorchProbabilityDistribution)→ torch.Tensor
implementation of ProbabilityDistribution interface

log_prob(actions: torch.Tensor)→ torch.Tensor
implementation of ProbabilityDistribution interface

abstract classmethod required_logits_shape(action_space: gym.spaces.Space)→ Se-
quence[int]

Returns the required shape for the corresponding neural network logits output.

Parameters action_space – The respective action space to compute logits for.

Returns The required logits shape.

sample()→ torch.Tensor
implementation of ProbabilityDistribution interface

DistributionMapper

class maze.distributions.distribution_mapper.DistributionMapper(action_space:
gym.spaces.Dict,
distribu-
tion_mapper_config:
Union[List[Union[None,
str, Map-
ping[str,
Any], Any]],
Mapping[str,
Union[None,
str, Map-
ping[str, Any],
Any]]])

Provides a mapping of spaces and action heads to the respective probability distributions to be used.

This ensures full flexibility for specifying different distributions to the same gym action space type. (e.g. One
gym.spaces.Box space could be modeled with a Beta another one with a DiagonalGaussian distribution.) It
allows to add and register arbitrary custom distributions.

Parameters

• action_space – The dictionary action space.

156 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• distribution_mapper_config – A Distribution mapper configuration (for details
see the docs).

action_head_distribution(action_head: str, logits: torch.Tensor, temperature: float) →
maze.distributions.torch_dist.TorchProbabilityDistribution

Creates a probability distribution for a given action head.

Parameters

• action_head – The name of the action head (action dictionary key).

• logits – the logits to parameterize the distribution from

• temperature – Controls the sampling behaviour * 1.0 corresponds to unmodified sam-
pling * smaller than 1.0 concentrates the action distribution towards deterministic sam-
pling

Returns (ProbabilityDistribution) the appropriate instance of a ProbabilityDistribution

logits_dict_to_distribution(logits_dict: Dict[str, torch.Tensor], temperature: float) →
maze.distributions.dict.DictProbabilityDistribution

Creates a dictionary probability distribution for a given logits dictionary.

Parameters

• logits_dict – A logits dictionary [action_head: action_logits] to parameterize the
distribution from.

• temperature – Controls the sampling behaviour. * 1.0 corresponds to unmodified
sampling * smaller than 1.0 concentrates the action distribution towards deterministic sam-
pling

Returns (DictProbabilityDistribution) the respective instance of a DictProbabilityDistribution.

required_logits_shape(action_head: str)→ Sequence[int]
Returns the required logits shape (network output shape) for a given action head.

Parameters action_head – The name of the action head (action dictionary key).

Returns The required logits shape.

atanh

class maze.distributions.utils.atanh(x: torch.Tensor)
Computes the arc-tangent hyperbolic.

Parameters x – The input tensor.

Returns The arc-tangent hyperbolic of x.

tensor_clamp

class maze.distributions.utils.tensor_clamp(x: torch.Tensor, t_min: torch.Tensor, t_max:
torch.Tensor)

Clamping with tensor and broadcast support.

Parameters

• x – the tensor to clamp.

• t_min – the minimum values.

• t_max – the maximum values.

1.4. API Documentation 157

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

Returns the clamped tensor.

These are built-in Torch probability distributions:

CategoricalProbabilityDistribution Categorical Torch probability distribution.
BernoulliProbabilityDistribution Bernoulli Torch probability distribution for multi-binary

action spaces.
DiagonalGaussianProbabilityDistributionDiagonal Gaussian (Normal) Torch probability distribu-

tion.
SquashedGaussianProbabilityDistributionTanh-squashed diagonal Gaussian (Normal) Torch

probability distribution.
BetaProbabilityDistribution Beta Torch probability distribution.

CategoricalProbabilityDistribution

class maze.distributions.categorical.CategoricalProbabilityDistribution(*args,
**kwds)

Categorical Torch probability distribution.

Parameters logits – the action selection logits.

deterministic_sample()
implementation of ProbabilityDistribution interface

log_prob(actions: torch.Tensor)→ torch.Tensor
implementation of ProbabilityDistribution interface

classmethod required_logits_shape(action_space: gym.spaces.Discrete)→ Sequence[int]
implementation of TorchProbabilityDistribution interface

BernoulliProbabilityDistribution

class maze.distributions.bernoulli.BernoulliProbabilityDistribution(*args,
**kwds)

Bernoulli Torch probability distribution for multi-binary action spaces.

Parameters

• logits – the action selection logits.

• action_space – The gym action space.

• temperature – The distribution temperature parameter.

deterministic_sample()→ torch.Tensor
implementation of ProbabilityDistribution interface

entropy()→ torch.Tensor
implementation of ProbabilityDistribution interface

kl(other: maze.distributions.torch_dist.TorchProbabilityDistribution)→ torch.Tensor
implementation of ProbabilityDistribution interface

log_prob(actions: torch.Tensor)→ torch.Tensor
implementation of ProbabilityDistribution interface

classmethod required_logits_shape(action_space: gym.spaces.MultiBinary) → Se-
quence[int]

implementation of TorchProbabilityDistribution interface

158 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

DiagonalGaussianProbabilityDistribution

class maze.distributions.gaussian.DiagonalGaussianProbabilityDistribution(*args,
**kwds)

Diagonal Gaussian (Normal) Torch probability distribution.

Parameters logits – The logits for both mean and standard deviation.

deterministic_sample()→ torch.Tensor
implementation of TorchProbabilityDistribution interface

entropy()→ torch.Tensor
implementation of TorchProbabilityDistribution interface

kl(other: maze.distributions.torch_dist.TorchProbabilityDistribution)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

log_prob(actions: torch.Tensor)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

classmethod required_logits_shape(action_space: gym.spaces.Space)→ Sequence[int]
implementation of TorchProbabilityDistribution interface

SquashedGaussianProbabilityDistribution

class maze.distributions.squashed_gaussian.SquashedGaussianProbabilityDistribution(*args,
**kwds)

Tanh-squashed diagonal Gaussian (Normal) Torch probability distribution.

Parameters

• logits – the logits for both mean and standard deviation.

• action_space – the underlying gym.spaces action space.

deterministic_sample()
implementation of TorchProbabilityDistribution interface

entropy()→ torch.Tensor
implementation of TorchProbabilityDistribution interface

kl(other: maze.distributions.torch_dist.TorchProbabilityDistribution)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

log_prob(actions: torch.Tensor)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

classmethod required_logits_shape(action_space: gym.spaces.Space)→ Sequence[int]
implementation of TorchProbabilityDistribution interface

sample()
implementation of TorchProbabilityDistribution interface

1.4. API Documentation 159

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

BetaProbabilityDistribution

class maze.distributions.beta.BetaProbabilityDistribution(*args, **kwds)
Beta Torch probability distribution.

Parameters

• logits – the logits for both mean and standard deviation.

• action_space – the underlying gym.spaces action space.

deterministic_sample()→ torch.Tensor
implementation of TorchProbabilityDistribution interface

entropy()→ torch.Tensor
implementation of TorchProbabilityDistribution interface

kl(other: maze.distributions.torch_dist.TorchProbabilityDistribution)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

log_prob(actions: torch.Tensor)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

classmethod required_logits_shape(action_space: gym.spaces.Space)→ Sequence[int]
implementation of TorchProbabilityDistribution interface

sample()→ torch.Tensor
implementation of TorchProbabilityDistribution interface

These are combined probability distributions:

MultiCategoricalProbabilityDistributionMulti-categorical probability distribution.
DictProbabilityDistribution Dictionary probability distribution.

MultiCategoricalProbabilityDistribution

class maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution(logits:
torch.Tensor,
ac-
tion_space:
gym.spaces.MultiDiscrete,
tem-
per-
a-
ture:
float)

Multi-categorical probability distribution.

The respective functions either return aggregated properties across the sub-distributions using a reduce_fun such
as mean or sum.

Parameters logits – The concatenated action selection logits for all sub spaces.

deterministic_sample()→ Dict[str, torch.Tensor]
implementation of TorchProbabilityDistribution interface

entropy(reduce_fun: callable = torch.mean)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

160 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

kl(other: maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution, reduce_fun:
callable = torch.mean)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

log_prob(actions: List[torch.Tensor])→ torch.Tensor
implementation of TorchProbabilityDistribution interface

neg_log_prob(actions: List[torch.Tensor])→ torch.Tensor
implementation of TorchProbabilityDistribution interface

classmethod required_logits_shape(action_space: gym.spaces.MultiDiscrete) → Se-
quence[int]

implementation of TorchProbabilityDistribution interface

sample()→ List[torch.Tensor]
implementation of TorchProbabilityDistribution interface

DictProbabilityDistribution

class maze.distributions.dict.DictProbabilityDistribution(distribution_dict:
Dict[str,
maze.distributions.distribution.ProbabilityDistribution])

Dictionary probability distribution.

The respective functions either return

• the per key distribution properties or

• aggregate the properties across the sub-distributions using a reduce_fun such as mean or sum.

Parameters distribution_dict – dictionary holding sub-probability distributions.

deterministic_sample()→ Dict[str, torch.Tensor]
implementation of TorchProbabilityDistribution interface

entropy(reduce_fun: callable = torch.mean)→ torch.Tensor
implementation of TorchProbabilityDistribution interface

kl(other: maze.distributions.dict.DictProbabilityDistribution, reduce_fun: callable = torch.mean) →
torch.Tensor
implementation of TorchProbabilityDistribution interface

log_prob(actions: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of TorchProbabilityDistribution interface

neg_log_prob(actions: Dict[str, torch.Tensor])→ Dict[str, torch.Tensor]
implementation of TorchProbabilityDistribution interface

sample()→ Dict[str, torch.Tensor]
implementation of TorchProbabilityDistribution interface

1.4. API Documentation 161

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

1.4.11 Core Utilities

These are general interfaces, classes and utility functions:

override Annotation for documenting method overrides.
unused Function to annotate unused variables.
set_random_states Set random states of all random generators used in the

framework.
flat_structured_space Compiles a flat gym.spaces.Dict space from a structured

environment space.
flat_structured_shapes Flatten a dict of shape dicts to a single dict
read_config Read YAML file into a dict
list_to_dict Convert lists to int-indexed dicts.
EnvFactory Helper class to instantiate an environment from config-

uration with the help of the Registry.
make_env_from_hydra Create an environment instance from the hydra configu-

ration, given the overrides.
Registry Supports the creation of different modules that can be

plugged into the environments (like demand generators
or reward schemes) and can instantiate them from pa-
rameters read from config files.

override

class maze.core.annotations.override(cls: Type)
Annotation for documenting method overrides.

Parameters cls – The superclass that provides the overridden method. If this cls does not actually
have the method, an error is raised.

unused

class maze.core.annotations.unused(*args)
Function to annotate unused variables. Also disables the ‘unused parameter/value’ inspection warning.

set_random_states

class maze.core.utils.seeding.set_random_states(seed: int)
Set random states of all random generators used in the framework.

Param seed: the seed integer initializing the random number generators.

162 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

flat_structured_space

class maze.core.utils.structured_env_utils.flat_structured_space(structured_space_dict:
Dict[Union[int,
str],
gym.spaces.Dict])

Compiles a flat gym.spaces.Dict space from a structured environment space. :param: The structured dictionary
spaces. :return: The flattened dictionary space.

flat_structured_shapes

class maze.core.utils.structured_env_utils.flat_structured_shapes(shapes:
Dict[Union[int,
str],
Dict[str,
Se-
quence[int]]])

Flatten a dict of shape dicts to a single dict

Parameters shapes – Collection of shape dict.

Returns Flat shape dict.

read_config

class maze.core.utils.config_utils.read_config(path: Union[pathlib.Path, str])
Read YAML file into a dict

Parameters path – Path of the file to read

Returns Dict with the YAML file contents

list_to_dict

class maze.core.utils.config_utils.list_to_dict(list_or_dict: Union[list, Mapping])
Convert lists to int-indexed dicts.

Code is simplified by supporting only one universal data structure instead of implementing code paths for lists
and dicts separately.

Parameters list_or_dict – The list to convert to dict. If it is already a dict, the dict is returned
without modification.

Returns The passed list as dict.

EnvFactory

class maze.core.utils.config_utils.EnvFactory(env: Union[None, str, Mapping[str, Any],
Any], wrappers: Union[List[Union[None,
str, Mapping[str, Any], Any]], Map-
ping[str, Union[None, str, Mapping[str,
Any], Any]]])

Helper class to instantiate an environment from configuration with the help of the Registry.

Parameters

1.4. API Documentation 163

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#list
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• env – environment configuration

• wrappers – collection of wrappers as configuration

make_env_from_hydra

class maze.core.utils.config_utils.make_env_from_hydra(config_module: str, con-
fig_name: str = None, **hy-
dra_overrides: str)

Create an environment instance from the hydra configuration, given the overrides. :param config_module:
Python module path of the hydra configuration package :param config_name: Name of the defaults configu-
ration yaml within config_module :param hydra_overrides: Overrides as kwargs, e.g. env=”cartpole”, configu-
ration=”test” :return: The newly instantiated environment

Registry

class maze.core.utils.registry.Registry(*args, **kwds)
Supports the creation of different modules that can be plugged into the environments (like demand generators
or reward schemes) and can instantiate them from parameters read from config files.

Parameters

• root_module – Starting point for search for suitable classes to be registered.

• base_type – A common interface (parent class) of the registered types (e.g. Demand-
Generator)

arg_to_collection(arg: Union[List[Union[None, str, Mapping[str, Any], Any]], Mapping[str,
Union[None, str, Mapping[str, Any], Any]]], **kwargs) → Dict[Union[str,
int], BaseType]

Instantiates objects specified in a list or dictionary.

arg_to_obj(arg: Union[None, str, Mapping[str, Any], Any], config: Mapping[str, Any] = None,
**kwargs)→ BaseType

Converts arg (usually passed to constructor of an env) to an instantiated class.

• If arg is already instantiated, just returns it

• If arg is a string, then construct an instance according to given type_registry and config parameters

• If arg is a dict-like configuration, construct a new instance. The type is identified by the reserved
attribute type and the remaining attributes are passed to the constructor.

Parameters

• arg – Either - an instantiated object inheriting from base_type - a string, e.g. ‘static’,
usually together with the config argument - a dict-like configuration, specifying the
type name in the reserved attribute type together with the constructor arguments.
(e.g. { 'class': 'static_demand', 'constructor_argument': 1,
... })

• config – Config to pass to the constructor if arg is a string.

• kwargs – Additional arguments that are merged with the configuration dictionary (useful
to sideload objects that can not conveniently be specified in the config, e.g. a shared
RandomState)

Returns arg if already instantiated, new object otherwise (see the build_obj method above)

164 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

classmethod build_obj(klass_or_callable: Union[Type[BaseType], Callable], in-
stance_or_config: Union[None, str, Mapping[str, Any], Any] =
None, **kwargs)→ BaseType

Given a class, init an instance of that class with given keyword arguments.

Parameters

• klass_or_callable – Class to instantiate, or alternatively a function returning in-
stance of the registry base type class.

• instance_or_config – Either already an actual instance of klass or keyword argu-
ments to provide

• kwargs – Additional arguments that are merged with the configuration dictionary (useful
to sideload objects that can not conveniently be specified in the config, e.g. a shared
RandomState)

Returns Instance of the given class

classmethod callable_from_path(path_string: str)→ Callable[[. . .], Any]
Attempt to import a callable from the specified path.

Parameters path_string – Path to the callable to import.

Returns Imported callable.

class_type_from_module_name(module_name: Union[str, Type[BaseType]]) →
Type[BaseType]

Import the given module and lookup the class from the module with the correct base type.

The implementation expects exactly one matching class per module. A ValueError is returned otherwise.
If the module name is not valid, a ModuleNotFoundError is triggered.

Parameters module_name – Absolute module path (e.g. maze_envs.logistics.
content_based_replenishment.env.maze_env)

Returns The one and only class from the given module that derives from base_type.

collect_modules(root_module: Any, base_type: Type[BaseType])
Populates a registry dictionary, by walking the specified root module.

Parameters

• root_module – Starting point for search for suitable classes to be registered.

• base_type – Class restriction. Registered classes/modules have to be of type klass.

Returns A dictionary with class name -> class type for all registered valid sub-classes.

1.4.12 Utilities

A collection of smaller auxiliary functions and classes:

SimpleStatsLoggingSetup Helper class to simplify the statistics logging setup.

1.4. API Documentation 165

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

SimpleStatsLoggingSetup

class maze.utils.log_stats_utils.SimpleStatsLoggingSetup(env:
maze.core.log_stats.log_stats_env.LogStatsEnv,
log_dir: str = None)

Helper class to simplify the statistics logging setup. All statistics defined for the given env are sent to a console
writer.

Limitation: It can only handle a single environment.

1.4.13 Trainers and Training Runners

This page contains the reference documentation for trainers and training runners:

Overview

• General

• Trainers

– Actor-Critics (AC)

– Evolutionary Strategies (ES)

– Imitation Learning (IL) and Learning from Demonstrations (LfD)

• Utilities

General

These are general interfaces, classes and utility functions for trainers and training runners:

Trainer Interface for trainers.
TrainingRunner Base class for training runner implementations.
TrainConfig Top-level configuration structure.
ModelConfig Model configuration structure.
AlgorithmConfig Base class for all specific algorithm configurations.
ModelSelectionBase Base class for model selection strategies.
BestModelSelection Best model selection strategy.

Trainer

class maze.train.trainers.common.trainer.Trainer
Interface for trainers.

abstract load_state(file_path: Union[str, BinaryIO])→ None
Load state from file. This is required for resuming training or model fine tuning with different parameters.

Parameters file_path – Path from where to load the state.

166 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

TrainingRunner

class maze.train.trainers.common.training_runner.TrainingRunner(state_dict_dump_file:
str,
spaces_config_dump_file:
str, normaliza-
tion_samples:
int)

Base class for training runner implementations.

normalization_samples: int
Number of samples (=steps) to collect normalization statistics at the beginning of the training.

run(cfg: omegaconf.DictConfig)→ None
While this method is designed to be overriden by individual subclasses, it provides some functionality that
is useful in general:

• Building the env factory for env + wrappers

• Estimating normalization statistics from the env

• If successfully estimated, wrapping the env factory so that envs are already built with the statistics

• Building the model composer from model config and env spaces config

• Serializing the env spaces configuration (so that the model composer can be re-loaded for future
rollout)

• Initializing logging setup

Parameters cfg – Full Hydra run job config

spaces_config_dump_file: str
Where to save the env spaces configuration (output directory handled by hydra)

state_dict_dump_file: str
Where to save the best model (output directory handled by hydra)

TrainConfig

class maze.train.trainers.common.training_runner.TrainConfig(env: omega-
conf.DictConfig,
model:
maze.train.trainers.common.training_runner.ModelConfig,
algorithm:
maze.train.trainers.common.training_runner.AlgorithmConfig,
runner:
maze.runner.Runner)

Top-level configuration structure.

The structured configuration support of hydra is limited currently (1.0-rc2).

E.g.

• Merging different configuration files did not work as expected (e.g. algorithm and env-algorithm)

• Although the entry-point expects a TrainConfig object, it just receives a DictConfig, which can cause
unexpected behaviour.

1.4. API Documentation 167

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Note that due to this limitations, this class merely acts as type hinting mechanism. Behind the scenes we
receive raw DictConfig objects and either need to invoke the Registry functionality or hydra.utils.
instantiate to instantiated objects of specific types where required.

ModelConfig

class maze.train.trainers.common.training_runner.ModelConfig(policies: Dict[Any,
Any], critics: Op-
tional[Dict[Any,
Any]], distribu-
tion_mapper:
Dict[Any, Any])

Model configuration structure.

As with TrainConfig this class enables type hinting, but is not actually instantiated.

AlgorithmConfig

class maze.train.trainers.common.training_runner.AlgorithmConfig
Base class for all specific algorithm configurations.

ModelSelectionBase

class maze.train.trainers.common.model_selection.model_selection_base.ModelSelectionBase
Base class for model selection strategies.

update(reward: float)→ None
Receives a new evaluation result from the model.

Parameters reward – mean evaluation reward

BestModelSelection

class maze.train.trainers.common.model_selection.best_model_selection.BestModelSelection(dump_file:
Op-
tional[str],
model:
Op-
tional[maze.core.agent.torch_model.TorchModel])

Best model selection strategy.

Parameters

• dump_file – Specifies the file path to dump the policy state for the best reward.

• model – The model to be dumped.

update(reward: float)→ None
Implementation of ModelSelection.update().

168 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

Trainers

These are interfaces, classes and utility functions for built-in trainers:

Actor-Critics (AC)

MultiStepActorCritic Base class for multi step actor critic.
MultiStepActorCriticEvents Event interface, defining statistics emitted by the

A2CTrainer.
MultiStepA2C Multi step advantage actor critic.
A2CAlgorithmConfig Algorithm parameters for multi-step A2C model.
MultiStepPPO Multi step Proximal Policy Optimization.
PPOAlgorithmConfig Algorithm parameters for multi-step PPO model.
MultiStepIMPALA Multi step advantage actor critic.
ImpalaAlgorithmConfig Algorithm parameters for Impala.
MultiStepIMPALAEvents Events specific for the impala algorithm, in order to

record and analyse it’s behaviour in more detail
ImpalaLearner Learner agent for Impala.
batch_outputs_time_major Batch the collected output in time major format
log_probs_from_logits_and_actions_and_spacesComputes action log-probs from policy logits, actions

and acton_spaces.
from_logits V-trace for softmax policies.
from_importance_weights V-trace from log importance weights.
get_log_rhos With the selected log_probs for multi-discrete actions

of behavior and target policies we compute the log_rhos
for calculating the vtrace.

1.4. API Documentation 169

Maze

MultiStepActorCritic

class maze.train.trainers.common.actor_critic.actor_critic_trainer.MultiStepActorCritic(algorithm_config:
Union[maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig,
maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig],
env:
Union[maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv,
maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin,
maze.core.log_stats.log_stats_env.LogStatsEnv],
eval_env:
[<class
'maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv'>,
<class
'maze.core.env.structured_env.StructuredEnv'>,
<class
'maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin'>,
<class
'maze.core.log_stats.log_stats_env.LogStatsEnv'>],
model:
maze.core.agent.torch_actor_critic.TorchActorCritic,
model_selection:
Op-
tional[maze.train.trainers.common.model_selection.best_model_selection.BestModelSelection],
ini-
tial_state:
Op-
tional[str]
=
None)

Base class for multi step actor critic.

Parameters

• algorithm_config – Algorithm parameters.

• env – Distributed structured environment

• eval_env – Evaluation distributed structured environment

• model – Structured torch actor critic model.

• initial_state – path to initial state (policy weights, critic weights, optimizer state)

• model_selection – Optional model selection class, receives model evaluation results.

evaluate(deterministic: bool, repeats: int)→ None
Perform evaluation on eval env.

Parameters

• deterministic – deterministic or stochastic action sampling (selection)

• repeats – number of evaluation episodes to average over

load_state(file_path: Union[str, BinaryIO])→ None
implementation of Trainer

load_state_dict(state_dict: Dict)→ None
Set the model and optimizer state. :param state_dict: The state dict.

170 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

train()→ None
Train policy using the synchronous advantage actor critic.

MultiStepActorCriticEvents

class maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
Event interface, defining statistics emitted by the A2CTrainer.

critic_grad_norm(critic_id: int, value: float)
gradient norm of the step critic

critic_value(critic_id: int, value: float)
critic value of the step critic

critic_value_loss(critic_id: int, value: float)
optimization loss of the step critic

learning_rate(value: float)
optimizer learning rate

policy_entropy(step_id: int, value: float)
entropy of the step policies

policy_grad_norm(step_id: int, value: float)
gradient norm of the step policies

policy_loss(step_id: int, value: float)
optimization loss of the step policy

time_epoch(value: float)
time required for epoch

time_rollout(value: float)
time required for rollout

time_update(value: float)
time required for update

1.4. API Documentation 171

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

MultiStepA2C

class maze.train.trainers.a2c.a2c_trainer.MultiStepA2C(algorithm_config:
maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig,
env:
Union[maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv,
maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin,
maze.core.log_stats.log_stats_env.LogStatsEnv],
eval_env: [<class
'maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv'>,
<class
'maze.core.env.structured_env.StructuredEnv'>,
<class
'maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin'>,
<class
'maze.core.log_stats.log_stats_env.LogStatsEnv'>],
model:
maze.core.agent.torch_actor_critic.TorchActorCritic,
model_selection: Op-
tional[maze.train.trainers.common.model_selection.best_model_selection.BestModelSelection],
initial_state: Optional[str]
= None)

Multi step advantage actor critic.

Parameters

• algorithm_config – Algorithm parameters.

• env – Distributed structured environment

• eval_env – Evaluation distributed structured environment

• model – Structured torch actor critic model.

• initial_state – path to initial state (policy weights, critic weights, optimizer state)

• model_selection – Optional model selection class, receives model evaluation results.

172 Chapter 1. Getting Started | |

Maze

A2CAlgorithmConfig

class maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig(n_epochs:
int,
epoch_length:
int,
deter-
min-
is-
tic_eval:
bool,
eval_repeats:
int,
pa-
tience:
int,
critic_burn_in_epochs:
int,
n_rollout_steps:
int,
lr:
float,
gamma:
float,
gae_lambda:
float,
pol-
icy_loss_coef:
float,
value_loss_coef:
float,
en-
tropy_coef:
float,
max_grad_norm:
float,
de-
vice:
str)

Algorithm parameters for multi-step A2C model.

critic_burn_in_epochs: int
Number of critic (value function) burn in epochs

deterministic_eval: bool
run evaluation in deterministic mode (argmax-policy)

device: str
Either “cpu” or “cuda”

entropy_coef: float
weight of entropy loss

epoch_length: int
number of updates per epoch

eval_repeats: int

1.4. API Documentation 173

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

number of evaluation trials

gae_lambda: float
bias vs variance trade of factor for GAE

gamma: float
discounting factor

lr: float
learning rate

max_grad_norm: float
The maximum allowed gradient norm during training

n_epochs: int
number of epochs to train

n_rollout_steps: int
Number of steps taken for each rollout

patience: int
number of steps used for early stopping

policy_loss_coef: float
weight of policy loss

value_loss_coef: float
weight of value loss

MultiStepPPO

class maze.train.trainers.ppo.ppo_trainer.MultiStepPPO(algorithm_config:
maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig,
env:
Union[maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv,
maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin,
maze.core.log_stats.log_stats_env.LogStatsEnv],
eval_env: [<class
'maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv'>,
<class
'maze.core.env.structured_env.StructuredEnv'>,
<class
'maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin'>,
<class
'maze.core.log_stats.log_stats_env.LogStatsEnv'>],
model:
maze.core.agent.torch_actor_critic.TorchActorCritic,
model_selection: Op-
tional[maze.train.trainers.common.model_selection.best_model_selection.BestModelSelection],
initial_state: Optional[str]
= None)

Multi step Proximal Policy Optimization.

Parameters

• algorithm_config – Algorithm parameters.

• env – Distributed structured environment

174 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

• eval_env – Evaluation distributed structured environment

• model – Structured torch actor critic model.

• initial_state – path to initial state (policy weights, critic weights, optimizer state)

• model_selection – Optional model selection class, receives model evaluation results.

PPOAlgorithmConfig

class maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig(n_epochs:
int,
epoch_length:
int,
deter-
min-
is-
tic_eval:
bool,
eval_repeats:
int,
pa-
tience:
int,
critic_burn_in_epochs:
int,
n_rollout_steps:
int,
lr:
float,
gamma:
float,
gae_lambda:
float,
pol-
icy_loss_coef:
float,
value_loss_coef:
float,
en-
tropy_coef:
float,
max_grad_norm:
float,
de-
vice:
str,
batch_size:
int,
n_optimization_epochs:
int,
clip_range:
float)

Algorithm parameters for multi-step PPO model.

1.4. API Documentation 175

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

batch_size: int
The batch size used for policy and value updates

clip_range: float
Clipping parameter of surrogate loss

critic_burn_in_epochs: int
Number of critic (value function) burn in epochs

deterministic_eval: bool
run evaluation in deterministic mode (argmax-policy)

device: str
Either “cpu” or “cuda”

entropy_coef: float
weight of entropy loss

epoch_length: int
number of updates per epoch

eval_repeats: int
number of evaluation trials

gae_lambda: float
bias vs variance trade of factor for GAE

gamma: float
discounting factor

lr: float
learning rate

max_grad_norm: float
The maximum allowed gradient norm during training

n_epochs: int
number of epochs to train

n_optimization_epochs: int
Number of epochs for for policy and value optimization

n_rollout_steps: int
Number of steps taken for each rollout

patience: int
number of steps used for early stopping

policy_loss_coef: float
weight of policy loss

value_loss_coef: float
weight of value loss

176 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

MultiStepIMPALA

class maze.train.trainers.impala.impala_trainer.MultiStepIMPALA(model:
maze.core.agent.torch_actor_critic.TorchActorCritic,
rollout_actors:
maze.train.parallelization.distributed_actors.distributed_actors.BaseDistributedActors,
eval_env:
Union[maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv,
maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin,
maze.core.log_stats.log_stats_env.LogStatsEnv],
options:
maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig)

Multi step advantage actor critic.

Parameters

• model – Structured policy to train

• rollout_actors – Distributed actors for collection of training rollouts

• eval_env – Env to run evaluation on

• options – Algorithm options

evaluate(deterministic: bool, repeats: int)→ None
Perform evaluation on eval env.

Parameters

• deterministic – deterministic or stochastic action sampling (selection)

• repeats – number of evaluation episodes to average over

load_state(file_path: Union[str, BinaryIO])→ None
implementation of Trainer

load_state_dict(state_dict: Dict)→ None
Set the model and optimizer state. :param state_dict: The state dict.

train(n_epochs: int, epoch_length: int, deterministic_eval: bool,
eval_repeats: int, patience: Optional[int], model_selection: Op-
tional[maze.train.trainers.common.model_selection.best_model_selection.BestModelSelection])
→ None

Train function that wraps normal train function in order to close all processes properly

Parameters

• n_epochs – number of epochs to train.

• epoch_length – number of updates per epoch.

• deterministic_eval – run evaluation in deterministic mode (argmax-policy)

• eval_repeats – number of evaluation trials

• patience – number of steps used for early stopping

• model_selection – Optional model selection class, receives model evaluation results

1.4. API Documentation 177

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

train_async(n_epochs: int, epoch_length: int, deterministic_eval: bool,
eval_repeats: int, patience: Optional[int], model_selection: Op-
tional[maze.train.trainers.common.model_selection.best_model_selection.BestModelSelection])
→ None

Train policy using the synchronous advantage actor critic.

Parameters

• n_epochs – number of epochs to train.

• epoch_length – number of updates per epoch.

• deterministic_eval – run evaluation in deterministic mode (argmax-policy)

• eval_repeats – number of evaluation trials

• patience – number of steps used for early stopping

• model_selection – Optional model selection class, receives model evaluation results

178 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

ImpalaAlgorithmConfig

class maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig(n_epochs:
int,
epoch_length:
int,
de-
ter-
min-
is-
tic_eval:
bool,
eval_repeats:
int,
eval_concurrency:
int,
queue_out_of_sync_factor:
float,
pa-
tience:
int,
n_rollout_steps:
int
=
50,
ac-
tors_batch_size:
int
=
2,
num_actors:
int
=
2,
lr:
float
=
0.0002,
gamma:
float
=
0.98,
pol-
icy_loss_coef:
float
=
1.0,
value_loss_coef:
float
=
0.5,
en-
tropy_coef:
float
=
0.00025,
max_grad_norm:
float
=
0,
vtrace_clip_rho_threshold:
float
=
1.0,
vtrace_clip_pg_rho_threshold:
float
=
1.0,
re-
ward_clipping:
str
=
'abs_one',
de-
vice:
str
=
'cpu')

Algorithm parameters for Impala.

1.4. API Documentation 179

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

actors_batch_size: int = 2
number of actors to combine to one batch

deterministic_eval: bool
run evaluation in deterministic mode (argmax-policy)

device: str = 'cpu'
Device of the learner (either cpu or cuda). Note that the actors collecting rollouts are always run on CPU.

entropy_coef: float = 0.00025
coefficient of the entropy used in the loss calculation

epoch_length: int
number of updates per epoch

eval_concurrency: int
Number of concurrently executed evaluation environments.

eval_repeats: int
number of evaluation trials

gamma: float = 0.98
discount factor

lr: float = 0.0002
learning rate

max_grad_norm: float = 0
max grad norm for gradient clipping, ignored if value==0

n_epochs: int
number of epochs to train

n_rollout_steps: int = 50
number of rolloutstep of each epoch substep

num_actors: int = 2
number of actors to be run

patience: int
number of steps used for early stopping

policy_loss_coef: float = 1.0
coefficient of the policy used in the loss calculation

queue_out_of_sync_factor: float
this factor multiplied by the actor_batch_size gives the size of the queue for the agents output col-
lected by the learner. Therefor if the all rollouts computed can be at most (queue_out_of_sync_factor
+ num_agents/actor_batch_size) out of sync with learner policy

reward_clipping: str = 'abs_one'
the type of reward clipping to be used, options ‘abs_one’, ‘soft_asymmetric’, ‘None’

value_loss_coef: float = 0.5
coefficient of the value used in the loss calculation

vtrace_clip_pg_rho_threshold: float = 1.0
A scalar float32 tensor with the clipping threshold on rho_s in rho_s delta log pi(a|x) (r + gamma v_{s+1}
- V(x_sfrom_importance_weights)). If None, no clipping is applied.

vtrace_clip_rho_threshold: float = 1.0
A scalar float32 tensor with the clipping threshold for importance weights (rho) when calculating the
baseline targets (vs). rho^bar in the paper. If None, no clipping is applied.

180 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

MultiStepIMPALAEvents

class maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
Events specific for the impala algorithm, in order to record and analyse it’s behaviour in more detail

critic_grad_norm(critic_key: Union[int, str], value: float)
Record the critic gradient norm

Parameters

• critic_key – the key of the critic

• value – the value

critic_value(critic_key: Union[int, str], value: float)
Record the critic value

Parameters

• critic_key – the key of the critic

• value – the value

critic_value_loss(critic_key: [<class 'int'>, <class 'str'>], value: float)
Record the critic value loss

Parameters

• critic_key – the key of the critic

• value – the value

estimated_queue_sizes(before: int, after: int)
Record the estimated queue size before and after the collection of the actors output

Parameters

• before – the estimated queue size before collection

• after – the estimated queue size after collection

policy_entropy(step_key: Union[int, str], value: float)
Record the policy entropy

Parameters

• step_key – the step_key of the multi-step env

• value – the value

policy_grad_norm(step_key: Union[int, str], value: float)
Record the gradient norm

Parameters

• step_key – the step_key of the multi-step env

• value – the value

policy_loss(step_key: Union[int, str], value: float)
Record the policy loss

Parameters

• step_key – the step_key of the multi-step env

• value – the value

1.4. API Documentation 181

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

time_backprob(time: float, percent: float)
Record the total time it took the learner to backprob the loss + relative per to total update time

Parameters

• time – the absolute time it took for the computation

• percent – the relative percentage this computation took w.r.t. to one update

time_collecting_actors(time: float, percent: float)
Record the total time it took the learner to collect the actors output + relative per to total update time

Parameters

• time – the absolute time it took for the computation

• percent – the relative percentage this computation took w.r.t. to one update

time_dequeuing_actors(time: float, percent: float)
Record the time it took to dequeue the actors output from the synced queue + relative per to total update
time

Parameters

• time – the absolute time it took for the computation

• percent – the relative percentage this computation took w.r.t. to one update

time_learner_rollout(time: float, percent: float)

Record the total time it took the learner to compute the logits on the agents output

• relative per to total update time

Parameters

• time – the absolute time it took for the computation

• percent – the relative percentage this computation took w.r.t. to one update

time_loss_computation(time: float, percent: float)
Record the total time it took the learner compute the loss + relative per to total update time

Parameters

• time – the absolute time it took for the computation

• percent – the relative percentage this computation took w.r.t. to one update

ImpalaLearner

class maze.train.trainers.impala.impala_learner.ImpalaLearner(eval_env:
Union[maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv,
maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin,
maze.core.log_stats.log_stats_env.LogStatsEnv],
model:
maze.core.agent.torch_actor_critic.TorchActorCritic,
n_rollout_steps:
int)

Learner agent for Impala. The agent only exists once (in the main thread) and is in charge of doing the loss
computation as computing and backpropagating the gradients. Furthermore it holds critic network in contrast to
the actors.

182 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

evaluate(deterministic: bool, repeats: int)→ None
Perform evaluation on eval env.

Parameters

• deterministic – deterministic or stochastic action sampling (selection)

• repeats – number of evaluation episodes to average over

learner_rollout_on_agent_output(actors_output: maze.train.parallelization.distributed_actors.actor.AgentOutput)
→ maze.train.trainers.impala.impala_learner.LearnerOutput

Compute the values and the action logits using the learners network parameters and the actors rollouts.
Thus we never step through an env here.

Parameters actors_output – The collected and batched actors output, including the
env_outputs such as observations and actions

Returns A LearnerOutput names tuple consisting of (values, detached_values, actions_logits,
n_critics)

batch_outputs_time_major

class maze.train.trainers.impala.impala_batching.batch_outputs_time_major(actor_outputs:
List[maze.train.parallelization.distributed_actors.actor.AgentOutput],
learner_device:
str)

Batch the collected output in time major format

Parameters

• actor_outputs – A list of actor outputs (e.g. rollouts consisting of observations, ac-
tions_taken, infos, action_logtis, rewards and dones)

• learner_device – the device (‘cpu’ or ‘cuda’) of the learner

Returns An ActorOutput Named tuple where the the list of input rollouts has been batched in the
second dim.

1.4. API Documentation 183

https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

log_probs_from_logits_and_actions_and_spaces

class maze.train.trainers.impala.impala_vtrace.log_probs_from_logits_and_actions_and_spaces(policy_logits:
Map-
ping[Union[str,
int],
Dict[str,
torch.Tensor]],
ac-
tions:
Map-
ping[Union[str,
int],
Dict[str,
torch.Tensor]],
ac-
tion_spaces:
Map-
ping[Union[str,
int],
gym.spaces.Space],
dis-
tri-
bu-
tion_mapper:
maze.distributions.distribution_mapper.DistributionMapper)

Computes action log-probs from policy logits, actions and acton_spaces.

In the notation used throughout documentation and comments, T refers to the time dimension ranging from 0 to
T-1. B refers to the batch size and NUM_ACTIONS refers to the number of actions.

Parameters

• policy_logits – A list (w.r.t. the substeps of the env) of dicts (w.r.t. the actions) of
tensors of un-normalized log-probabilities (shape list[dict[str,[T, B, NUM_ACTIONS]]])

• actions – An list (w.r.t. the substeps of the env) of dicts (w.r.t. the actions) of tensors
(list[dict[str,[T, B]]])

• action_spaces – A list (w.r.t. the substeps of the env) of the action spaces

• distribution_mapper – A distribution mapper providing a mapping of action heads
to distributions.

Returns A list (w.r.t. the substeps of the env) of dicts (w.r.t. the actions) of tensors of shape [T, B]
corresponding to the sampling log probability of the chosen action w.r.t. the policy. And a list
(w.r.t. the substeps of the env) of DictProbability distributions corresponding to the step-action-
distributions.

184 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

from_logits

class maze.train.trainers.impala.impala_vtrace.from_logits(behaviour_policy_logits:
Mapping[Union[str,
int], Dict[str,
torch.Tensor]], tar-
get_policy_logits:
Mapping[Union[str,
int], Dict[str,
torch.Tensor]],
actions: Map-
ping[Union[str,
int], Dict[str,
torch.Tensor]], ac-
tion_spaces: Map-
ping[Union[str, int],
gym.spaces.Space],
distribution_mapper:
maze.distributions.distribution_mapper.DistributionMapper,
discounts:
torch.Tensor, rewards:
torch.Tensor, values:
Mapping[Union[str,
int], torch.Tensor],
bootstrap_value:
Mapping[Union[str,
int], torch.Tensor],
clip_rho_threshold:
Optional[float],
clip_pg_rho_threshold:
Optional[float], de-
vice: Optional[str])

V-trace for softmax policies.

Calculates V-trace actor critic targets for softmax polices as described in

“IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Espeholt,
Soyer, Munos et al.

Target policy refers to the policy we are interested in improving and behaviour policy refers to the policy that
generated the given rewards and actions.

In the notation used throughout documentation and comments, T refers to the time dimension ranging from 0 to
T-1. B refers to the batch size and ACTION_SPACE refers to the list of numbers each representing a number of
actions.

Parameters

• behaviour_policy_logits – A list (w.r.t. the substeps of the env) of dict
(w.r.t. the actions) of tensors of un-normalized log-probabilities (shape list[dict[str,[T, B,
NUM_ACTIONS]]])

• target_policy_logits – A list (w.r.t. the substeps of the env) of dict (w.r.t.
the actions) of tensors of un-normalized log-probabilities (shape list[dict[str,[T, B,
NUM_ACTIONS]]])

• actions – An list (w.r.t. the substeps of the env) of dicts (w.r.t. the actions) with actions
sampled from the behavior policy. (list[dict[str,[T, B]]])

1.4. API Documentation 185

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• action_spaces – A list (w.r.t. the substeps of the env) of the action spaces

• distribution_mapper – A distribution mapper providing a mapping of action heads
to distributions.

• discounts – A float32 tensor of shape [T, B] with the discount encountered when fol-
lowing the behavior policy.

• rewards – A float32 tensor of shape [T, B] with the rewards generated by following the
behavior policy.

• values – A list (w.r.t. the substeps of the env) of float32 tensors of shape [T, B] with the
value function estimates wrt. the target policy.

• bootstrap_value – A list (w.r.t. the substeps of the env) of float32 tensors of shape [B]
with the value function estimate at time T.

• clip_rho_threshold – A scalar float32 tensor with the clipping threshold for impor-
tance weights (rho) when calculating the baseline targets (vs). rho^bar in the paper.

• clip_pg_rho_threshold – A scalar float32 tensor with the clipping threshold on
rho_s in: rho_s delta log pi(a|x) (r + gamma v_{s+1} - V(x_s)).

• device – the device the results should be sent to before returning it

Returns A VTraceFromLogitsReturns namedtuple with the following fields: vs: A list (w.r.t. the
substeps of the env) of float32 tensors of shape [T, B]. Can be used as target to train a baseline
(V(x_t) - vs_t)^2. pg_advantages: A list (w.r.t. the substeps of the env) of float32 tensors of
shape [T, B]. Can be used as an estimate of the advantage in the calculation of policy gradients.
log_rhos: A list (w.r.t. the substeps of the env) of float32 tensors of shape [T, B] containing
the log importance sampling weights (log rhos). behaviour_action_log_probs: A list (w.r.t. the
substeps of the env) of float32 tensors of shape [T, B] containing the behaviour policy action
log probabilities (log mu(a_t)). target_action_log_probs: A list (w.r.t. the substeps of the env)
of float32 tensors of shape [T, B] containing target policy action probabilities (log pi(a_t)). tar-
get_step_action_dists: A list (w.r.t. the substeps of the env) of the action probability distributions
w.r.t. to the target policy

186 Chapter 1. Getting Started | |

Maze

from_importance_weights

class maze.train.trainers.impala.impala_vtrace.from_importance_weights(log_rhos:
torch.Tensor,
dis-
counts:
torch.Tensor,
re-
wards:
torch.Tensor,
val-
ues:
torch.Tensor,
boot-
strap_value:
torch.Tensor,
clip_rho_threshold:
Op-
tional[float],
clip_pg_rho_threshold:
Op-
tional[float])

V-trace from log importance weights.

Calculates V-trace actor critic targets as described in

“IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Espeholt,
Soyer, Munos et al.

In the notation used throughout documentation and comments, T refers to the time dimension ranging from 0
to T-1. B refers to the batch size. This code also supports the case where all tensors have the same number of
additional dimensions, e.g., rewards is [T, B, C], values is [T, B, C], bootstrap_value is [B, C].

Parameters

• log_rhos – A float32 tensor of shape [T, B] representing the log importance sampling
weights, i.e. log(target_policy(a) / behaviour_policy(a)). V-trace performs operations on
rhos in log-space for numerical stability.

• discounts – A float32 tensor of shape [T, B] with discounts encountered when following
the behaviour policy.

• rewards – A float32 tensor of shape [T, B] containing rewards generated by following the
behaviour policy.

• values – A float32 tensor of shape [T, B] with the value function estimates wrt. the target
policy.

• bootstrap_value – A float32 of shape [B] with the value function estimate at time T.

• clip_rho_threshold – A scalar float32 tensor with the clipping threshold for impor-
tance weights (rho) when calculating the baseline targets (vs). rho^bar in the paper. If None,
no clipping is applied.

• clip_pg_rho_threshold – A scalar float32 tensor with the clipping threshold on
rho_s in rho_s delta log pi(a|x) (r + gamma v_{s+1} - V(x_sfrom_importance_weights)).
If None, no clipping is applied.

Returns A VTraceReturns namedtuple (vs, pg_advantages) where: vs: A float32 tensor of shape [T,
B]. Can be used as target to train a baseline (V(x_t) - vs_t)^2. pg_advantages: A float32 tensor

1.4. API Documentation 187

https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

of shape [T, B]. Can be used as the advantage in the calculation of policy gradients.

get_log_rhos

class maze.train.trainers.impala.impala_vtrace.get_log_rhos(target_action_log_probs:
Mapping[Union[str,
int], Dict[str,
torch.Tensor]], be-
haviour_action_log_probs:
Mapping[Union[str,
int], Dict[str,
torch.Tensor]])

With the selected log_probs for multi-discrete actions of behavior and target policies we compute the log_rhos
for calculating the vtrace.

Parameters

• target_action_log_probs – A list (w.r.t. the substeps of the env) of dicts (w.r.t.
the actions) of tensors of shape [T, B] corresponding to the sampling log probability of the
chosen action w.r.t. the target policy.

• behaviour_action_log_probs – A list (w.r.t. the substeps of the env) of dicts (w.r.t.
the actions) of tensors of shape [T, B] corresponding to the sampling log probability of the
chosen action w.r.t. the behaviour policy.

Returns a list (w.r.t. the substeps of the env) of tensors, where each tensor is of the shape [T,B]

Evolutionary Strategies (ES)

ESTrainer Trainer class for OpenAI Evolution Strategies.
ESAlgorithmConfig Algorithm parameters for evolution strategies model.
ESEvents Event interface, defining statistics emitted by the ES-

Trainer.
ESMasterRunner Baseclass of ES training master runners (serves as basis

for dev and other runners).
ESDevRunner Runner config for single-threaded training, based on

ESDummyDistributedRollouts.
SharedNoiseTable A fixed length vector of deterministically generated

pseudo-random floats.
Optimizer Abstract baseclass of an optimizer to be used with ES.
SGD Stochastic gradient descent with momentum
Adam Adam optimizer
ESRolloutResult Result structure for distributed rollouts.
ESDummyDistributedRollouts Implementation of the ES distribution by running the

rollouts synchronously in the same process.
ESDistributedRollouts Abstract base class of ES rollout distribution.
ESAbortException This exception is raised if the current rollout is inten-

tionally aborted.
ESRolloutWorkerWrapper The rollout generation is bound to a single worker envi-

ronment by implementing it as a Wrapper class.
get_flat_parameters Get the parameters of all sub-policies as a single flat

vector.
continues on next page

188 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Table 44 – continued from previous page
set_flat_parameters Overwrite the parameters of all sub-policies by a single

flat vector.

ESTrainer

class maze.train.trainers.es.es_trainer.ESTrainer(algorithm_config:
maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig,
policy:
maze.core.agent.torch_policy.TorchPolicy,
shared_noise:
maze.train.trainers.es.es_shared_noise_table.SharedNoiseTable,
normalization_stats: Op-
tional[Dict[str, Tu-
ple[numpy.ndarray,
numpy.ndarray]]])

Trainer class for OpenAI Evolution Strategies.

Parameters

• algorithm_config – Algorithm parameters.

• policy – Multi-step policy encapsulating the policy networks

• shared_noise – The noise table, with the same content for every worker and the master.

• normalization_stats – Normalization statistics as calculated by the NormalizeOb-
servationWrapper.

load_state(file_path: Union[str, BinaryIO])→ None
implementation of Trainer

load_state_dict(state_dict: Dict)→ None
Set the model and optimizer state. :param state_dict: The state dict.

train(distributed_rollouts: maze.train.trainers.es.distributed.es_distributed_rollouts.ESDistributedRollouts,
model_selection: Optional[maze.train.trainers.common.model_selection.model_selection_base.ModelSelectionBase])
→ None

Run the ES training loop.

Parameters

• distributed_rollouts – The distribution interface for experience collection.

• model_selection – Optional model selection class, receives model evaluation results.

1.4. API Documentation 189

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

ESAlgorithmConfig

class maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig(n_rollouts_per_update:
int,
n_timesteps_per_update:
int,
max_epochs:
int,
max_steps:
int, op-
timizer:
Any,
l2_penalty:
float,
noise_stddev:
float)

Algorithm parameters for evolution strategies model.

l2_penalty: float
L2 weight regularization coefficient.

max_epochs: int
The number of epochs to train before termination. Pass 0 to train indefinitely.

max_steps: int
Limit the episode rollouts to a maximum number of steps. Set to 0 to disable this option.

n_rollouts_per_update: int
Minimum number of episode rollouts per training iteration (=epoch).

n_timesteps_per_update: int
Minimum number of cumulative env steps per training iteration (=epoch). The training iteration is only
finished, once the given number of episodes AND the given number of steps has been reached. One of the
two parameters can be set to 0.

noise_stddev: float
The scaling factor of the random noise applied during training.

optimizer: Any
The optimizer to use to update the policy based on the sampled gradient.

ESEvents

class maze.train.trainers.es.es_events.ESEvents
Event interface, defining statistics emitted by the ESTrainer.

policy_grad_norm(policy_id: int, value: float)
gradient norm of the step policies

policy_norm(policy_id: int, value: float)
l2 norm of the step policy parameters

real_time(value: float)
elapsed real time per iteration (=epoch)

update_ratio(value: float)
norm(optimizer step) / norm(all parameters)

190 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

ESMasterRunner

class maze.train.trainers.es.es_runners.ESMasterRunner(state_dict_dump_file: str,
spaces_config_dump_file:
str, normaliza-
tion_samples: int,
shared_noise_table_size:
int)

Baseclass of ES training master runners (serves as basis for dev and other runners).

abstract create_distributed_rollouts(env: Union[maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin],
shared_noise: maze.train.trainers.es.es_shared_noise_table.SharedNoiseTable)
→ maze.train.trainers.es.distributed.es_distributed_rollouts.ESDistributedRollouts

Abstract method, derived runners like ESDevRunner return an appropriate rollout generator.

Parameters

• env – the one and only environment

• shared_noise – noise table to be shared by all workers

Returns a newly instantiated rollout generator

run(cfg: omegaconf.DictConfig)→ None
Run the training master node.

shared_noise_table_size: int
Number of float values in the deterministically generated pseudo-random table (250.000.000 x 32bit floats
= 1GB)

ESDevRunner

class maze.train.trainers.es.es_runners.ESDevRunner(state_dict_dump_file: str,
spaces_config_dump_file: str,
normalization_samples: int,
shared_noise_table_size: int,
n_eval_rollouts: int)

Runner config for single-threaded training, based on ESDummyDistributedRollouts.

create_distributed_rollouts(env: Union[maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin],
shared_noise: maze.train.trainers.es.es_shared_noise_table.SharedNoiseTable)
→ maze.train.trainers.es.distributed.es_distributed_rollouts.ESDistributedRollouts

use single-threaded rollout generation

n_eval_rollouts: int
Fixed number of evaluation runs per epoch.

1.4. API Documentation 191

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

SharedNoiseTable

class maze.train.trainers.es.es_shared_noise_table.SharedNoiseTable(count:
int =
250000000)

A fixed length vector of deterministically generated pseudo-random floats.

This enables a communication strategy for the distributed training, that allows to transfer noise table indices
instead of full gradient vectors.

Parameters count – Number of float values in the fixed length table (250.000.000 x 32bit floats =
1GB)

get(i: int, dim: int)→ numpy.ndarray
Get the pseudo-random sequence at table index i.

Parameters

• i – start index within the table

• dim – desired vector length

:return A noise vector with length dim

sample_index(random_state: numpy.random.RandomState)→ int
Sample a random index within the table, taking into account the size of the noise vector.

Parameters random_state – random generator to be used

Returns A noise index to be passed to maze.train.trainers.es.
es_shared_noise_table.SharedNoiseTable.get().

Optimizer

class maze.train.trainers.es.optimizers.base_optimizer.Optimizer
Abstract baseclass of an optimizer to be used with ES.

setup(policy: maze.core.agent.torch_policy.TorchPolicy)→ None
Two-stage construction to enable construction from config-files.

Parameters policy – ES policy network to optimize

update(global_gradient: numpy.ndarray)→ float
Execute one update step.

Parameters global_gradient – A flat gradient vector

:return update ratio = norm(optimizer step) / norm(theta)

SGD

class maze.train.trainers.es.optimizers.sgd.SGD(step_size: float, momentum: float =
0.9)

Stochastic gradient descent with momentum

setup(policy: maze.core.agent.torch_policy.TorchPolicy)→ None
prepare optimizer for training

192 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

Adam

class maze.train.trainers.es.optimizers.adam.Adam(step_size, beta1=0.9, beta2=0.999,
epsilon=1e-08)

Adam optimizer

setup(policy: maze.core.agent.torch_policy.TorchPolicy)→ None
prepare optimizer for training

ESRolloutResult

class maze.train.trainers.es.distributed.es_distributed_rollouts.ESRolloutResult(is_eval:
bool)

Result structure for distributed rollouts.

ESDummyDistributedRollouts

class maze.train.trainers.es.distributed.es_dummy_distributed_rollouts.ESDummyDistributedRollouts(env:
maze.core.env.structured_env.StructuredEnv,
n_eval_rollouts:
int,
shared_noise:
maze.train.trainers.es.es_shared_noise_table.SharedNoiseTable)

Implementation of the ES distribution by running the rollouts synchronously in the same process.

generate_rollouts(policy: maze.core.agent.torch_policy.TorchPolicy, max_steps: Op-
tional[int], noise_stddev: float, normalization_stats: Dict[str, Dict[str,
Union[numpy.ndarray, float, int, Iterable[Union[float, int]]]]]) → Genera-
tor[maze.train.trainers.es.distributed.es_distributed_rollouts.ESRolloutResult,
None, None]

First execute a fixed number of eval rollouts and then continue with producing training samples.

ESDistributedRollouts

class maze.train.trainers.es.distributed.es_distributed_rollouts.ESDistributedRollouts
Abstract base class of ES rollout distribution.

abstract generate_rollouts(policy: maze.core.agent.torch_policy.TorchPolicy, max_steps:
Optional[int], noise_stddev: float, normalization_stats:
Dict[str, Tuple[numpy.ndarray, numpy.ndarray]]) → Genera-
tor[maze.train.trainers.es.distributed.es_distributed_rollouts.ESRolloutResult,
None, None]

Declare a new rollout task and start producing results that can be obtained from the returned generator.

Note that different distribution strategies have different ways of balancing evaluation and training rollouts.

Parameters

• policy – Multi-step policy encapsulating the policy networks

• max_steps – Optionally limit the rollout to a number of environment steps (horizon).

• noise_stddev – The standard deviation of the applied parameter noise.

• normalization_stats – Normalization statistics as calculated by the NormalizeOb-
servationWrapper.

1.4. API Documentation 193

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

ESAbortException

class maze.train.trainers.es.distributed.es_rollout_wrapper.ESAbortException
This exception is raised if the current rollout is intentionally aborted.

ESRolloutWorkerWrapper

class maze.train.trainers.es.distributed.es_rollout_wrapper.ESRolloutWorkerWrapper(*args,
**kwds)

The rollout generation is bound to a single worker environment by implementing it as a Wrapper class.

clear_abort()
Clear the abort flag.

generate_evaluation(policy: maze.core.agent.torch_policy.TorchPolicy) →
maze.train.trainers.es.distributed.es_distributed_rollouts.ESRolloutResult

Generate a single evaluation rollout.

Parameters policy – Multi-step policy encapsulating the policy networks

:return A result set with a single evaluation rollout

generate_training(policy: maze.core.agent.torch_policy.TorchPolicy, noise_stddev: float) →
maze.train.trainers.es.distributed.es_distributed_rollouts.ESRolloutResult

Generate a single training sample, consisting of two rollouts, obtained by adding and subtracting the same
random perturbation vector from the policy.

Parameters

• policy – Multi-step policy encapsulating the policy networks.

• noise_stddev – The standard deviation of the applied parameter noise.

:return A result set with a pair of rollouts generated by adding/subtracting the perturbations
(antithetic sampling)

rollout(policy: maze.core.agent.torch_policy.TorchPolicy)→ None
Use the passed policy to step the environment until it is done.

This method does not return any results, query the episode statistics instead to process the results.

Parameters policy – Multi-step policy encapsulating the policy networks

set_abort()
Abort the rollout (intended to be called from a thread).

get_flat_parameters

class maze.train.trainers.es.es_utils.get_flat_parameters(policy:
maze.core.agent.torch_policy.TorchPolicy)

Get the parameters of all sub-policies as a single flat vector.

Parameters policy – source policy

Returns flattened parameters

194 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

set_flat_parameters

class maze.train.trainers.es.es_utils.set_flat_parameters(policy:
maze.core.agent.torch_policy.TorchPolicy,
flat_params:
torch.Tensor)

Overwrite the parameters of all sub-policies by a single flat vector.

Parameters

• policy – target policy

• flat_params – concatenated vector

Imitation Learning (IL) and Learning from Demonstrations (LfD)

ImitationEvents Event interface defining statistics emitted by the imita-
tion learning trainers.

ImitationEvaluator Abstract interface for imitation learning evaluation.
ImitationRunner Dev runner for imitation learning.
ParallelLoadedImitationDataset A version of the in-memory dataset that loads all data in

parallel.
DataLoadWorker Data loading worker used to map states to actual obser-

vations.
InMemoryImitationDataSet Trajectory data set for imitation learning.
BCTrainer Trainer for behavioral cloning learning.
BCAlgorithmConfig Algorithm parameters for behavioral cloning.
BCEvaluator Evaluates a given policy on validation data.
BCLoss Loss function for behavioral cloning.

ImitationEvents

class maze.train.trainers.imitation.imitation_events.ImitationEvents
Event interface defining statistics emitted by the imitation learning trainers.

box_mean_abs_deviation(step_id: Union[str, int], subspace_name: str, value: int)
Mean absolute deviation for box (continuous) subspaces.

discrete_accuracy(step_id: Union[str, int], subspace_name: str, value: int)
Accuracy for discrete (categorical) subspaces.

multi_binary_accuracy(step_id: Union[str, int], subspace_name: str, value: int)
Accuracy for multi-binary subspaces.

policy_entropy(step_id: Union[str, int], value: float)
Entropy of the step policies.

policy_grad_norm(step_id: Union[str, int], value: float)
Gradient norm of the step policies.

policy_l2_norm(step_id: Union[str, int], value: float)
L2 norm of the step policies.

policy_loss(step_id: Union[str, int], value: float)
Optimization loss of the step policy.

1.4. API Documentation 195

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float

Maze

ImitationEvaluator

class maze.train.trainers.imitation.imitation_evaluator.ImitationEvaluator
Abstract interface for imitation learning evaluation.

evaluate(policy: maze.core.agent.torch_policy.TorchPolicy)→ None
Evaluate given policy (results are stored in stat logs) and dump the model if the reward improved.

Parameters policy – Policy to evaluate

ImitationRunner

class maze.train.trainers.imitation.imitation_runners.ImitationRunner(state_dict_dump_file:
str,
spaces_config_dump_file:
str,
nor-
mal-
iza-
tion_samples:
int,
dataset:
omega-
conf.DictConfig)

Dev runner for imitation learning.

Loads the given trajectory data and trains a policy on top of it using supervised learning.

dataset: omegaconf.DictConfig
Specify the Dataset class used to load the trajectory data for training

run(cfg: omegaconf.DictConfig)→ None
Run the training master node.

ParallelLoadedImitationDataset

class maze.train.trainers.imitation.parallel_loaded_im_data_set.ParallelLoadedImitationDataset(*args:
Any,
**kwargs:
Any)

A version of the in-memory dataset that loads all data in parallel.

This significantly speeds up data loading in cases where conversion of MazeStates and MazeActions into actions
and observations is demanding.

Parameters

• trajectory_data_dir – See the parent class.

• env_factory – See the parent class.

• n_workers – Number of worker processes to load data in.

196 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

DataLoadWorker

class maze.train.trainers.imitation.parallel_loaded_im_data_set.DataLoadWorker
Data loading worker used to map states to actual observations.

static run(env_factory: Callable, trajectory_file_paths: List[Union[pathlib.Path, str]], report-
ing_queue: multiprocessing.context.BaseContext.Queue)→ None

Load trajectory data from the provided trajectory file paths. Report exceptions to the main process.

Parameters

• env_factory – Function for creating an environment for MazeState and MazeAction
conversion.

• trajectory_file_paths – Which trajectory data files should this worker load and
process.

• reporting_queue – Queue for reporting loaded data and exceptions back to the main
process.

InMemoryImitationDataSet

class maze.train.trainers.imitation.in_memory_data_set.InMemoryImitationDataSet(*args:
Any,
**kwargs:
Any)

Trajectory data set for imitation learning.

Loads all data on initialization and then keeps it in memory.

Parameters

• trajectory_data_dir – The directory where the trajectory data are stored.

• env_factory – Function for creating an environment for state and action conversion. For
Maze envs, the environment configuration (i.e. space interfaces, wrappers etc.) determines
the format of the actions and observations that will be derived from the recorded MazeAc-
tions and MazeStates (e.g. multi-step observations/actions etc.).

static get_trajectory_files(trajectory_data_dir: str)→ List[pathlib.Path]
List pickle files (“pkl” suffix, used for trajectory data storage by default) in the given directory.

Parameters trajectory_data_dir – Where to look for the trajectory records (= pickle
files).

Returns A list of available pkl files in the given directory.

static load_episode_record(env: maze.core.env.structured_env.StructuredEnv,
episode_record: maze.core.trajectory_recorder.episode_record.EpisodeRecord)
→ Tuple[List[Dict[Union[int, str], Any]], List[Dict[Union[int,
str], Any]]]

Convert an episode trajectory record into an array of observations and actions using the given env.

Parameters

• env – Env to use for conversion of MazeStates and MazeActions into observations and
actions

• episode_record – Episode record to load

1.4. API Documentation 197

https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/pathlib.html#pathlib.Path
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

Returns Loaded observations and actions. I.e., a tuple (observation_list, action_list). Each of the
lists contains observation/action dictionaries, with keys corresponding to IDs of structured
sub-steps. (I.e., the dictionary will have just one entry for non-structured scenarios.)

random_split(lengths: Sequence[int], generator: torch.Generator = torch.default_generator) →
List[torch.utils.data.dataset.Subset]

Randomly split the dataset into non-overlapping new datasets of given lengths.

The split is based on episodes – samples from the same episode will end up in the same subset. Based on
the available episode lengths, this might result in subsets of slightly different lengths than specified.

Optionally fix the generator for reproducible results, e.g.:

self.random_split([3, 7], generator=torch.Generator().manual_seed(42))

Parameters

• lengths – lengths of splits to be produced (best effort, the result might differ based on
available episode lengths

• generator – Generator used for the random permutation.

Returns A list of the data subsets, each with size roughly (!) corresponding to what was specified
by lengths.

BCTrainer

class maze.train.trainers.imitation.bc_trainer.BCTrainer(data_loader:
torch.utils.data.dataloader.DataLoader,
policy:
maze.core.agent.torch_policy.TorchPolicy,
optimizer:
torch.optim.optimizer.Optimizer,
loss:
maze.train.trainers.imitation.bc_loss.BCLoss,
train_stats:
maze.core.log_stats.log_stats.LogStatsAggregator
=
<maze.core.log_stats.log_stats.LogStatsAggregator
object>, imi-
tation_events:
maze.train.trainers.imitation.imitation_events.ImitationEvents
=
<abc.ImitationEventsProxy
object>)

Trainer for behavioral cloning learning.

Runs training on top of provided trajectory data and rolls out the policy using the provided evaluator.

In structured (multi-step) envs, all policies are trained simultaneously based on the substep actions and observa-
tion present in the trajectory data.

data_loader: torch.utils.data.dataloader.DataLoader
Data loader for loading trajectory data.

imitation_events: maze.train.trainers.imitation.imitation_events.ImitationEvents = <abc.ImitationEventsProxy object>
Imitation-specific training events

198 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

load_state(file_path: Union[str, BinaryIO])→ None
implementation of Trainer

load_state_dict(state_dict: Dict)→ None
Set the model and optimizer state. :param state_dict: The state dict.

loss: maze.train.trainers.imitation.bc_loss.BCLoss
Class providing the training loss function.

optimizer: torch.optim.optimizer.Optimizer
Optimizer to use

policy: maze.core.agent.torch_policy.TorchPolicy
Structured policy to train.

train(n_epochs: int, evaluator: maze.train.trainers.imitation.imitation_evaluator.ImitationEvaluator,
eval_every_k_iterations: int = None)→ None

Run training.

Parameters

• n_epochs – How many epochs to train for

• evaluator – Evaluator to use for evaluation rollouts

• eval_every_k_iterations – Number of iterations after which to run evaluation
(in addition to evaluations at the end of each epoch, which are run automatically). If set to
None, evaluations will run on epoch end only.

train_stats: maze.core.log_stats.log_stats.LogStatsAggregator = <maze.core.log_stats.log_stats.LogStatsAggregator object>
Training statistics

BCAlgorithmConfig

class maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig(device:
str,
batch_size:
int,
n_eval_workers:
int,
val-
i-
da-
tion_percentage:
float,
n_epochs:
int,
eval_every_k_iterations:
int,
n_eval_episodes:
int,
max_episode_steps:
int,
op-
ti-
mizer:
Any)

Algorithm parameters for behavioral cloning.

1.4. API Documentation 199

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

batch_size: int
Batch size for training

device: str
Either “cpu” or “cuda”

eval_every_k_iterations: int
Number of iterations after which to run evaluation (in addition to evaluations at the end of each epoch,
which are run automatically). If set to None, evaluations will run on epoch end only.

max_episode_steps: int
Max number of steps per episode to run during each evaluation rollout

n_epochs: int
number of epochs to train

n_eval_episodes: int
Number of episodes to run during each evaluation rollout

n_eval_workers: int
Number of workers to perform evaluation runs in. If set to 1, evaluation is performed in the main process.

optimizer: Any
The optimizer to use to update the policy.

validation_percentage: float
Percentage of the data used for validation.

BCEvaluator

class maze.train.trainers.imitation.bc_evaluator.BCEvaluator(loss:
maze.train.trainers.imitation.bc_loss.BCLoss,
model_selection:
Op-
tional[maze.train.trainers.common.model_selection.model_selection_base.ModelSelectionBase],
data_loader:
torch.utils.data.DataLoader)

Evaluates a given policy on validation data.

Parameters

• data_loader – The data used for evaluation.

• loss – Loss function to be used.

• model_selection – Model selection interface that will be notified of the recorded re-
wards.

evaluate(policy: maze.core.agent.torch_policy.TorchPolicy)→ None
Evaluate given policy (results are stored in stat logs) and dump the model if the reward improved.

Parameters policy – Policy to evaluate

200 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/constants.html#None

Maze

BCLoss

class maze.train.trainers.imitation.bc_loss.BCLoss(action_spaces_dict:
Dict[Union[int, str],
gym.spaces.Dict], loss_discrete:
torch.nn.Module =
torch.nn.CrossEntropyLoss,
loss_box: torch.nn.Module
= torch.nn.MSELoss,
loss_multi_binary:
torch.nn.Module =
torch.nn.functional.binary_cross_entropy_with_logits)

Loss function for behavioral cloning.

action_spaces_dict: Dict[Union[int, str], gym.spaces.Dict]
Action space we are training on (used to determine appropriate loss functions)

calculate_loss(policy: maze.core.agent.torch_policy.TorchPolicy, observation_dict:
Dict[Union[int, str], Any], action_dict: Dict[Union[int, str], Any], events:
maze.train.trainers.imitation.imitation_events.ImitationEvents)→ torch.Tensor

Calculate and return the training loss for one step (= multiple sub-steps in structured scenarios).

Parameters

• policy – Structured policy to evaluate

• observation_dict – Dictionary with observations identified by substep ID

• action_dict – Dictionary with actions identified by substep ID

• events –

Returns Total loss

Utilities

stack_numpy_dict_list Stack list of dictionaries holding numpy arrays as val-
ues.

unstack_numpy_list_dict Inverse of stack_numpy_dict_list().
compute_gradient_norm Computes the cumulative gradient norm of all provided

parameters.
stack_torch_dict_list Stack list of dictionaries holding torch tensors as values.

stack_numpy_dict_list

class maze.train.utils.train_utils.stack_numpy_dict_list(dict_list: List[Dict[str,
numpy.ndarray]], ex-
pand: bool = False)

Stack list of dictionaries holding numpy arrays as values.

Parameters

• dict_list – A list of identical dictionaries to be stacked, e.g. [{a: 1}, {a: 2}]

• expand – If True the values are expended by one dimension at dimension zero.

Returns The list entries as a stacked dictionary, e.g. {a : [1, 2]}

1.4. API Documentation 201

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool

Maze

unstack_numpy_list_dict

class maze.train.utils.train_utils.unstack_numpy_list_dict(list_dict: Dict[str,
numpy.ndarray])

Inverse of stack_numpy_dict_list().

Converts a dict of stacked lists (e.g. {a : [1, 2]}) into a list of dicts (e.g. [{a: 1}, {a: 2}]).

Parameters list_dict – Dict of stacked lists, e.g. {a : [1, 2]}

Returns List of dicts, e.g. [{a: 1}, {a: 2}]

compute_gradient_norm

class maze.train.utils.train_utils.compute_gradient_norm(params: Iter-
able[torch.Tensor])

Computes the cumulative gradient norm of all provided parameters.

Parameters params – Iterable over model parameters.

Returns The cumulative gradient norm.

stack_torch_dict_list

class maze.train.utils.train_utils.stack_torch_dict_list(dict_list: List[Dict[str,
Union[torch.Tensor,
numpy.ndarray]]], ex-
pand: bool = False, dim:
int = 0)

Stack list of dictionaries holding torch tensors as values.

Similar to stack_numpy_dict_list(), but for tensors.

Parameters

• dict_list – A list of identical dictionaries to be stacked.

• expand – If True the values are expended by one dimension at dimension :param dim.

• dim – The dimension in which to stack/concat the lists.

Returns The list entries as a stacked dictionary.

1.4.14 Parallelization

This page contains the reference documentation for the parallelization module.

ObservationAggregator Observation aggregator used in distributed training for
aggregating observations of multiple instances of the
same environment.

BaseWorker This class holds a policy as well an env in order to step
through the env, by producing action from the policy
and recoding the rollout to be processed by the learner.

BaseWorkerOutput Base class for outputs generated by the agent.

202 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#bool
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

ObservationAggregator

class maze.train.parallelization.observation_aggregator.ObservationAggregator
Observation aggregator used in distributed training for aggregating observations of multiple instances of the
same environment.

abstract aggregate()→ Any
This function aggregates the collected list of observations.

reset(observations: List[Any] = None)→ None
Reset aggregator.

Parameters observations – a list of observations.

BaseWorker

class maze.train.parallelization.base_worker.BaseWorker
This class holds a policy as well an env in order to step through the env, by producing action from the policy
and recoding the rollout to be processed by the learner.

abstract rollout() → Union[Tuple[maze.train.parallelization.base_worker.BaseWorkerOutput,
List], Tuple[numpy.ndarray, List]]

Interface to performs an agent rollout, that is sample actions, step through the env for a maximum of
n_rollout_steps and collect data.

Returns This rollout as an ActorOutput or array of ActorOutputs

abstract update_policy(state_dict: Dict)→ None
Update the policy with the given state dict.

Parameters state_dict – State dict to load.

BaseWorkerOutput

class maze.train.parallelization.base_worker.BaseWorkerOutput(observations:
Dict[Union[str,
int], Dict[str,
torch.Tensor]],
actions_taken:
Dict[Union[str,
int], Dict[str,
torch.Tensor]],
rewards:
torch.Tensor,
dones:
torch.Tensor,
infos: List[Any])

Base class for outputs generated by the agent.

Parameters

• observations – Observations collected during the rollout.

• actions_taken – Actions taken during the rollout.

• rewards – Rewards collected during the rollout.

• dones – Dones collected during the rollout.

1.4. API Documentation 203

https://python.readthedocs.io/en/latest/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/stdtypes.html#str

Maze

• infos – Infos collected during the rollout.

static get_dict_dict_obj_attr_names()→ List[str]
Retrieve the attribute names of the actor output fields that have dict dict structure.

Returns A list of all attributes having a dict-dict structure.

static get_list_obj_attr_names()→ List[str]
Retrieve the attribute names of the actor output fields that have list structure.

Returns A list of all attributes having a list structure.

static get_tensor_obj_attr_names()→ List[str]
Retrieve the attribute names of the actor output fields that have tensor structure.

Returns A list of all attributes having a tensor structure.

to(device: str)→ None
Cast all elements to the given device.

Parameters device – The device to put the output on (cpu or cuda).

Distributed Environments

These are interfaces, classes and utility functions for distributed environments:

BaseDistributedEnv Abstract base class for distributed environments.
DummyStructuredDistributedEnv Creates a simple wrapper for multiple environments,

calling each environment in sequence on the current
Python process.

BaseDistributedEnv

class maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv(num_envs:
int)

Abstract base class for distributed environments.

Param num_envs: the number of distributed environments.

abstract reset()
Reset all the environments and return respective observations in env-aggregated form.

Returns observations in env-aggregated form.

abstract seed(seed: int = None)→ None
Sets the seed for this distributed env’s random number generator(s) and its contained parallel envs.

abstract step(actions: Iterable[Any]) → Tuple[Dict[str, numpy.ndarray], numpy.ndarray,
numpy.ndarray, Iterable[Dict[Any, Any]]]

Step the environments with the given actions.

Parameters actions – the list of actions for the respective envs.

Returns observations, rewards, dones, information-dicts all in env-aggregated form.

204 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

DummyStructuredDistributedEnv

class maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv(env_factories:
List[Callable[],
Union[maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin]]],
log-
ging_prefix:
Op-
tional[str]
=
None)

Creates a simple wrapper for multiple environments, calling each environment in sequence on the current Python
process. This is useful for computationally simple environment such as cartpole-v1, as the overhead of mul-
tiprocess or multi-thread outweighs the environment computation time. This can also be used for RL methods
that require a vectorized environment, but that you want a single environments to train with.

Parameters env_factories – A list of functions that will create the environments (each callable
returns a MultiStepEnvironment instance when called).

property action_space
implementation of StructuredEnvSpacesMixin interface

property action_spaces_dict
Return the action space of one of the distributed envs.

actor_id()→ List[Tuple[Union[str, int], int]]
Return the actor id tuples of all envs in a list.

close()→ None
BaseDistributedEnv implementation

get_stats(level: maze.core.log_stats.log_stats.LogStatsLevel = <LogStatsLevel.EPOCH: 3>) →
maze.core.log_stats.log_stats.LogStatsAggregator

Returns the aggregator of the individual episode statistics emitted by the parallel envs.

Parameters level – Must be set to LogStatsLevel.EPOCH, step or episode statistics are not
propagated

get_stats_value(event: Callable, level: maze.core.log_stats.log_stats.LogStatsLevel, name: Op-
tional[str] = None)→ Union[int, float, numpy.ndarray, dict]

Obtain a single value from the epoch statistics dict.

Parameters

• event – The event interface method of the value in question.

• name – The output_name of the statistics in case it has been specified in maze.core.
log_stats.event_decorators.define_epoch_stats()

• level – Must be set to LogStatsLevel.EPOCH, step or episode statistics are not propa-
gated.

is_actor_done()→ numpy.ndarray
Return the done flags of all actors in a list.

property observation_space
implementation of StructuredEnvSpacesMixin interface

property observation_spaces_dict
Return the observation space of one of the distributed envs.

1.4. API Documentation 205

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Maze

reset()→ Dict[str, numpy.ndarray]
BaseDistributedEnv implementation

seed(seed: int = None)→ None
BaseDistributedEnv implementation

step(actions: List[Any]) → Tuple[Dict[str, numpy.ndarray], numpy.ndarray, numpy.ndarray, Iter-
able[Dict[Any, Any]]]

Step the environments with the given actions.

Parameters actions – the list of actions for the respective envs.

Returns observations, rewards, dones, information-dicts all in env-aggregated form.

write_epoch_stats()
Trigger the epoch statistics generation.

Distributed Actors

These are interfaces, classes and utility functions for distributed actors:

ActorAgent Steps through a given environment and records rollouts.
BaseDistributedActors The base class for all distributed actors.

ActorAgent

class maze.train.parallelization.distributed_actors.actor.ActorAgent(env_factory:
Callable,
policy:
maze.core.agent.torch_policy.TorchPolicy,
n_rollout_steps:
int)

Steps through a given environment and records rollouts. Designed to be used in distributed rollouts.

rollout()→ maze.train.parallelization.distributed_actors.actor.AgentOutput_w_stats
Performs a agent rollout, that is sample actions and step through the env for a maximum of n_rollout_steps.
This rollout (observations, rewards, dones, infos, actions_taken, actions_logits) is returned

Returns This rollout (observations, rewards, dones, infos, actions_taken, actions_logits) as an
ActorOutput named tuple

update_policy(state_dict: Dict)→ NoReturn
Update the policy with the given state dict.

Parameters state_dict – State dict to load.

206 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/functions.html#int

Maze

BaseDistributedActors

class maze.train.parallelization.distributed_actors.distributed_actors.BaseDistributedActors(env_factory:
Callable[],
Union[maze.core.env.structured_env.StructuredEnv,
maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin,
maze.core.log_stats.log_stats_env.LogStatsEnv]],
pol-
icy:
maze.core.agent.torch_policy.TorchPolicy,
n_rollout_steps:
int,
n_actors:
int,
batch_size:
int)

The base class for all distributed actors.

Distributed actors run rollouts independently. Rollouts are recorded and made available in batches to be used
during training. When a new policy version is made available, it is distributed to all actors.

Parameters

• env_factory – Factory function for envs to run rollouts on

• policy – Structured policy to sample actions from

• n_rollout_steps – Number of rollouts steps to record in one rollout

• n_actors – Number of distributed actors to run simultaneously

• batch_size – Size of the batch the rollouts are collected in

abstract broadcast_updated_policy(state_dict: Dict)→ None
Broadcast the newest version of the policy to the actors.

Parameters state_dict – State of the new policy version to broadcast.

abstract collect_outputs(learner_device: str)→ Tuple[maze.train.parallelization.distributed_actors.actor.AgentOutput,
float, float, float]

Collect self.batch_size actor outputs from the queue and return them batched where the first dim is time
and the second is the batch size.

Parameters learner_device – the device of the learner

Returns A tuple of (1) batched version of ActorOutputs, (2) queue size before de-queueing, (3)
queue size after dequeueing, and (4) the time it took to dequeue the outputs

get_epoch_stats_aggregator()→ maze.core.log_stats.log_stats.LogStatsAggregator
Return the collected epoch stats aggregator

get_stats_value(event: Callable, level: maze.core.log_stats.log_stats.LogStatsLevel, name: Op-
tional[str] = None)→ Union[int, float, numpy.ndarray, dict]

Obtain a single value from the epoch statistics dict.

Parameters

• event – The event interface method of the value in question.

• name – The output_name of the statistics in case it has been specified in maze.core.
log_stats.event_decorators.define_epoch_stats()

1.4. API Documentation 207

https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/functions.html#float
https://python.readthedocs.io/en/latest/library/stdtypes.html#str
https://python.readthedocs.io/en/latest/library/functions.html#int
https://python.readthedocs.io/en/latest/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://python.readthedocs.io/en/latest/library/stdtypes.html#dict

Maze

• level – Must be set to LogStatsLevel.EPOCH, step or episode statistics are not propa-
gated.

abstract start()→ None
Start all distributed actors

abstract stop()→ None
Stop all distributed actors

• For installing Maze just follow the installation instructions.

• To see Maze in action check out a first example.

• For a more applied introduction visit the step by step tutorial.

You can also find an extensive overview of Maze in the table of contents as well as the API documentation.

208 Chapter 1. Getting Started | |

https://python.readthedocs.io/en/latest/library/constants.html#None
https://python.readthedocs.io/en/latest/library/constants.html#None

CHAPTER

TWO

SPOTLIGHTS

Below we list of some of Maze’s key features. The list is far from exhaustive but none the less a nice starting point to
dive into the framework.

• Configure your applications and experiments with the Hydra config system .

• Design and visualize your policy and value networks with the Perception Module.

• Pre-process and normalize your observations without writing boiler plate code.

• Stick to your favourite tools and trainers by combining Maze with other RL frameworks.

• Although Maze supports more complex environment structures you can of course still integrate existing Gym

environments .

• Scale your training runs with Ray and Kubernetes .

Warning: This is a preliminary, non-stable release of Maze. It is not yet complete and not all of our interfaces
have settled yet. Hence, there might be some breaking changes on our way towards the first stable release.

This project is powered by | Any questions or feedback, just get in touch

209

https://hydra.cc/
https://gym.openai.com/
https://ray.io/
https://kubernetes.io/
https://www.enlite.ai/
mailto:office@enlite.ai
https://github.com/enlite-ai/maze/issues
https://stackoverflow.com/questions/tagged/maze-rl

Maze

210 Chapter 2. Spotlights

CHAPTER

THREE

DOCUMENTATION OVERVIEW

Below you find an overview of the general Maze framework documentation, which is beyond the API documentation.
The listed pages motivate and explain the underlying concepts but most importantly also provide code snippets and
minimum working examples to quickly get you started.

3.1 Training

Here, we show how to train a policy on a standard Gym or custom environment using algorithms and models from
Maze. This guide focuses on the main mechanics of Maze training runs, plus also gives some pointers on how to
customize the training with custom environments (using the tutorial Maze 2D-cutting environment as an example),
models, etc.

The figure below shows a conceptual overview of the Maze training workflow.

On this page:

211

Maze

• The first example demostrates training with the default settings. The main purpose is to show how the Maze
training pipeline works in general.

• The second example explains how you can customize training on standard Gym and Maze environments (for
which configuration files are already provided by Maze).

• The following section then explains what you need to customize training for your own project, including custom
components and configuration files.

• Finally, the last section shows how to launch training directly from Python (avoiding the CLI).

In order to fully understand the configuration mechanisms used here, you should familiarize yourself with how Maze
makes use of the Hydra configuration framework.

3.1.1 Example 1: Your First Training Run

We can train a policy from scratch on the Cartpole environment with default settings using the following command:

$ maze-run -cn conf_train env=gym_env env.name=CartPole-v0

The -cn conf_train argument specifies that we would like to use conf_train.yaml as our root config file.
This is needed as by default, configuration for rollouts is used.

Furthermore, we specify that gym_env configuration should be used, with CartPole-v0 as the Gym environment
name. (For more information on how to read and customize the default configuration files, see Hydra overview.)

Such a training run consists of these main stages, loaded based on the default configuration provided by Maze:

1. The full configuration is assembled via Hydra based on the config files available, the defaults set in root config,
and the overrides you provide via CLI (see Hydra overview<hydra-overview> to understand more about this
process).

2. Hydra creates the output directory where all output files will be stored.

3. The full configuration of the job is logged: (1) to standard output, (2) as a text entry to your Tensorboard logs,
and (3) as a YAML file in the output directory.

4. If the observation normalization wrappers is present, observation normalization statistics are collected and
stored (note that no wrappers are applied by default).

5. Policies and critics are initialized and their graphical depictions saved.

6. The training starts, statistics are displayed in console and stored to a Tensorboard file, and current best model
versions are saved (by default to state_dict.pt file).

7. Once the training is done, final evaluation runs are performed and final model versions saved. (When the training
is done depends on the training runner. Usually, this is specified using the runner.n_epochs argument, but
the training can also end with early stopping if there is no more improvement).

As the job is running, you should see the statistics from the training and evaluation runs printed in your console, as
mentioned in the 6. step:

...

********** Iteration 3 **********
step|path
→˓ | value
=====|==|====================

4|eval DiscreteActionEvents action substep_0/
→˓action | [len:281, :0.5]

4|eval BaseEnvEvents reward median_step_
→˓count | 18.500

(continues on next page)

212 Chapter 3. Documentation Overview

Maze

(continued from previous page)

4|eval BaseEnvEvents reward mean_step_
→˓count | 28.100

4|eval BaseEnvEvents reward total_step_
→˓count | 928.000

4|eval BaseEnvEvents reward total_episode_
→˓count | 40.000

4|eval BaseEnvEvents reward episode_count
→˓ | 10.000

4|eval BaseEnvEvents reward std
→˓ | 16.447

4|eval BaseEnvEvents reward mean
→˓ | 28.100

4|eval BaseEnvEvents reward min
→˓ | 16.000

4|eval BaseEnvEvents reward max
→˓ | 66.000
-> new overall best model 28.10000!
...

This main structure remains similar for all environment and training configurations.

3.1.2 Example 2: Customizing with Provided Components

When your Maze job is launched using maze-run from the CLI, the following happens under the hood:

1. A job configuration is assembled by putting available configuration files together with the overrides you specify
as arguments to the run command. More on that can be found in configuration documentation page, specifically
in Hydra overview.

2. The complete assembled configuration is handed over to the Maze runner specified in the configuration (in the
runner group). This runner then launches and manages the training (or any other) job.

The common points for customizing the training run correspond to the configuration groups listed in the training root
config file, namely:

• Environment (env configuration group), configuring which environment the training runs on, as well as cus-
tomizing any other inner configuration of the environment, if available (like raw piece size in 2D cuttting envi-
ronment)

• Training algorithm (algorithm configuration group), specifying the algorithm used and configuration for it

• Model (model configuration group), specifying how the models for policies and (optionally) critics should be
assembled

• Runner (runner configuration group), specifying options for how the training is run (e.g. locally, in de-
velopment mode, or using Ray on a Kubernetes cluster). The runner is also the main object responsible for
administering the whole training run (and runners are thus specific to individual algorithms used).

Maze provides a host of configuration files useful for working with standard Gym environments and environments
provided by Maze (such as the 2D cutting environment). Hence, to use these, it suffices to supply appropriate overrides,
without writing any additional configuration files.

By default, the gym_env configuration is used, which allows us to specify the Gym env that we would like to
instantiate:

$ maze-run -cn conf_train env=gym_env env.name=LunarLander-v2

With appropriate overrides, we can also include vector observation model and wrappers (providing normalization):

3.1. Training 213

Maze

$ maze-run -cn conf_train env=gym_env env.name=LunarLander-v0 wrappers=gym_pixel_env
→˓model=gym_pixel_env

Alternatively, we could use the tutorial Cutting 2D environment:

$ maze-run -cn conf_train env=tutorial_cutting_2d_struct_masked \
wrappers=tutorial_cutting_2d model=tutorial_cutting_2d_struct_masked

Further, by default, the algorithm used is Evolution Strategies (the implementation is provided by Maze). To use a
different algorithm, e.g. PPO with a shared critic, we just need to add the appropriate overrides:

$ maze-run -cn conf_train algorithm=ppo env=tutorial_cutting_2d_struct_masked \
wrappers=tutorial_cutting_2d model=tutorial_cutting_2d_struct_masked

To see all the configuration files available out-of-the-box, check out the maze/conf package.

3.1.3 Training in Your Custom Project

While the default environments and configurations are nice to get started quickly or test different approaches in stan-
dard scenarios, the primary focus of Maze are fully custom environments and models solving real-world problems
(which are of course much more fun as well!).

The best place to start with a custom environment is the Maze step by step tutorial (mentioned already in the previous
section) showing how to implement a custom Maze environment from scratch, along with respective configuration
files (see also Hydra: Your Own Configuration Files).

Then, you can easily launch your environment by supplying your own configuration file (here we use one from the
tutorial):

$ maze-run -cn conf_train env=tutorial_cutting_2d_struct_masked \
wrappers=tutorial_cutting_2d model=tutorial_cutting_2d_struct_masked

For links to more customization options (like building custom models with Maze Perception Module), check out the
Where to Go Next section.

While customizing other configuration groups listed in the previous section (e.g., algorithm, runner) is not
needed as often, all of these can be customized in an analogous way (i.e., implement your own components that plug
into the framework instead of the default ones, and then add your own config to be able to configure them from the
command line).

3.1.4 Plain Python Training

In most use cases, it will probably be more convenient to launch training directly from the CLI and just implement your
custom components (wrappers, environments, models, etc.) as needed. However, it is definitely possible to launch
training also from Python, and the inner architecture of Maze should be sufficiently modular to allow you to extract
just the parts that you want.

Because each of the algorithms included in Maze has slightly different needs, the usage will likely slightly differ.
However, regardless of which algorithm you intend to use, the TrainingRunner subclasses offer good examples
of what components you will need for launching training directly from Python.

Specifically, you’ll need to concentrate on the run method, which takes as an argument the full assembled hydra
configuration (which is printed to the command line every time you launch a job).

Usually, the run method does roughly the following:

214 Chapter 3. Documentation Overview

Maze

• Instantiates the environment and policy components (some of this functionality is provided by the shared
TrainingRunner superclass, as a large part of that is common for all training runners)

• Assembles the policy and critics into a structured policy

• Instantiates the trainer and any other components needed for training

• Launches the training

For example, this is the run method taken directly from the evolution strategies runner:

@override(TrainingRunner)
def run(self, cfg: DictConfig) -> None:

"""Run the training master node."""
super().run(cfg)
env = self.env_factory()

--- init the shared noise table ---
print("********** Init Shared Noise Table **********")
shared_noise = SharedNoiseTable(count=self.shared_noise_table_size)

--- initialize policies ---
policy = TorchPolicy(networks=self.model_composer.policy.networks,

distribution_mapper=self.model_composer.distribution_
→˓mapper,

device="cpu")

print("********** Trainer Setup **********")
trainer = ESTrainer(algorithm_config=cfg.algorithm,

policy=policy,
shared_noise=shared_noise,
normalization_stats=self.normalization_statistics)

initialize model from input_dir
self._init_trainer_from_input_dir(trainer=trainer, state_dict_dump_file=self.

→˓state_dict_dump_file,
input_dir=cfg.input_dir)

model_selection = BestModelSelection(dump_file=self.state_dict_dump_file,
→˓model=policy)

print("********** Run Trainer **********")
run with pseudo-distribution, without worker processes
trainer.train(self.create_distributed_rollouts(env=env, shared_noise=shared_

→˓noise),
model_selection=model_selection)

3.1.5 Where to Go Next

• After training, you might want to roll out the trained policy to further evaluate it or record the actions taken.

• To create a custom Maze environment, you might want to review Maze environment hierarchy and creating a
Maze environment from scratch.

• To build custom Maze models, have a look at the Maze Perception Module.

• To better understand how to configure custom environments and other components of your project, you might
want to review the more advanced parts of configuration with Hydra.

3.1. Training 215

Maze

3.2 Rollouts

During rollouts, the agent interacts with a given environment, issuing actions obtained from a given policy (be it a
heuristic or a trained policy).

Usually, the purpose of rollouts is either evaluation (or even deployment) of a given policy in a given environment, or
collection of trajectory data. Collected trajectory data can later be used for further learning (e.g. imitation learning)
or for inspecting the policy behavior more closely using trajectory viewers.

On this page:

• The First Rollout demostrates the main mechanics of running a rollout.

• Rollout Runner Configuration explains how to configure the rollout runners.

• Environment and Agent Configuration shows how to configure different environments and agents.

• Finally, Plain Python Configuration shows how to run rollouts without the CLI.

216 Chapter 3. Documentation Overview

Maze

3.2.1 The First Rollout

Rollouts can be run from the command line, using the maze-run command. Rollout configuration
(conf_rollout) is used by default. Hence, to run your first rollout, it suffices to execute:

$ maze-run env=gym_env env.name=CartPole-v0

This runs a rollout of a random policy on cartpole environment. Statistics from the rollout are printed to the
console, and trajectory data with event logs are stored in the output directory automatically configured by Hydra.

Alternatively, we might configure the rollouts to run just one episode in sequential mode and render the env (but more
on that and other configuration options below):

$ maze-run env=gym_env env.name=CartPole-v0 runner=sequential runner.n_episodes=1
→˓runner.render=true

3.2.2 Rollout Runner Configuration

Rollouts are run by rollout runners, which are agent- and environment-agnostic (for configuring environments and
agents, see the following section).

By default, rollouts are run in multiple processes in parallel (as can be seen in the rollout configuration file, which lists
runner: parallel in the defaults), and are handled by the ParallelRolloutRunner.

Alternatively, rollouts can be run sequentially in a single process by opting for the sequential runner configuration:

$ maze-run env=gym_env env.name=CartPole-v0 runner=sequential

This is mainly useful when running a single episode only or for debugging, as sequential rollouts are much slower.

The available configuration options for both scenarios are listed in the Hydra runner package (conf/runners/).

These are the parameters for parallel rollout runner:

@package _group_
type: maze.core.rollout.parallel_rollout_runner.ParallelRolloutRunner

Number of processes to run the rollouts in concurrently
n_processes: 5

Total number of episodes to run
n_episodes: 50

Max steps per episode to perform
max_episode_steps: 200

If true, trajectory data will be recorded and stored in :code:`trajectory_data`
→˓directory
record_trajectory: true

If true, event logs will be recorded and stored in `event_logs_directory
record_event_logs: true

(Note that the default output directory is handled by Hydra)

Using these parameters, we can modify the rollout to e.g. be run only in 3 processes, and be comprised of 100 episodes,
each of max 50 steps:

3.2. Rollouts 217

Maze

$ maze-run env=gym_env env.name=CartPole-v0 runner.n_processes=3 \
runner.n_episodes=100 runner.max_episode_steps=10

(Alternatively, you can create your own configuration file that you will then supply to the maze-run command as
described in Hydra primer section).

3.2.3 Environment and Policy Configuration

Environment and policy are configured using the env, resp. policy Hydra packages. Rollout runners are
environment- and agent-agnostic, and will attempt to instantiate the type specified in the config files using Maze
Registry.

Environment is expected to conform to the StructuredEnv interface and agent to the StructuredPolicy
interface.

For agents, there are the following example config files:

• agent/random_policy.yaml for instantiating a class that conforms to the StructuredPolicy inter-
face directly

• agent/cutting_2d_greedy_policy (in maze-envs/logistics) for wrapping (potentially multi-
ple) flat policies into a structured policy

• agent/torch_policy (in maze/train) for loading and rolling out a policy trained using the Maze frame-
work

Hence, after training a policy on the tutorial Cutting 2D environment:

$ maze-run -cn conf_train env=tutorial_cutting_2d_struct_masked
wrappers=tutorial_cutting_2d model=tutorial_cutting_2d_struct_masked

We can roll it out using:

$ maze-run policy=torch_policy env=tutorial_cutting_2d_struct_masked
→˓wrappers=tutorial_cutting_2d \
model=tutorial_cutting_2d_struct_masked input_dir=outputs/[training-output-dir]

Note that for this to work, the training-output-dir parameter must be set to the output directory of the training
run (the model state dict and other configuration will be loaded from there).

3.2.4 Plain Python Configuration

Rollout runners are primarily designed to support running through Hydra from command line. That being said, you
can of course instantiate and use the runners directly in Python if you have some special needs.

from maze.core.agent.dummy_cartpole_policy import DummyCartPolePolicy
from maze.core.rollout.sequential_rollout_runner import SequentialRolloutRunner
from maze.core.wrappers.maze_gym_env_wrapper import GymMazeEnv

Instantiate an example environment and agent
env = GymMazeEnv("CartPole-v0")
agent = DummyCartPolePolicy()

Run a sequential rollout with rendering
(including an example wrapper the environment will be wrapped in)
sequential = SequentialRolloutRunner(

(continues on next page)

218 Chapter 3. Documentation Overview

Maze

(continued from previous page)

n_episodes=10,
max_episode_steps=100,
record_trajectory=True,
record_event_logs=True,
render=True)

sequential.run_with(env=env, wrappers={"ObservationLoggingWrapper": {}}, agent=agent)

Using the snippet above, you can run a rollout on any agent and environment directly from Python (parallel rollouts
can be run similarly).

However, note that the rollout runners are currently designed to be run only once (which is their main use case for
runs initiated from the command line). Running them repeatedly might cause some issues especially with statistics
and event logging, as the runners initiate new writers every time (so you might get duplicate outputs) and some of
these operations are order-sensitive (especially for the parallel rollouts where some state might be carried over to child
processes).

3.2.5 Where to Go Next

If you collected trajectory data during the rollout, you might want to:

• Visualize the collected rollout data in a trajectory viewer notebook

• Use the collected data for imitation learning

3.3 Collecting and Visualizing Rollouts

While the Event System provides an overview of notable events happening during an episode through statistics and
event logs, it is often needed to dig deeper and visualize the full environment state at a given time step.

With the Maze Trajectory Viewer, it is possible replay past episodes from collected trajectory data in a Jupyter Note-
book.

3.3. Collecting and Visualizing Rollouts 219

Maze

3.3.1 Requirements

Note: Rollouts visualization in a notebook is not currently available for Gym environments.

The trajectory viewer notebook requires the environment to implement a Maze-compatible Renderer based on
matplotlib. The tutorial 2D cutting environment serves as a perfect example – see the Adding a Renderer section to
understand how to implement one.

Unfortunately, Maze does not yet support rendering from trajectory data for standard Gym environments. For such
environments, you can render only during the rollout itself by setting the corresponding option on the sequential
renderer (i.e., provide the following overrides for rollouts: runner=sequential runner.render=true).

3.3.2 Trajectory Data Collection

When using a compliant environment, past trajectories can be rendered directly from the trajectory data. These are
usually collected using the rollout runners via CLI.

To simply collect trajectory data of a heuristic policy on the tutorial Cutting 2D environment, run:

$ maze-run env=tutorial_cutting_2d_flat policy=tutorial_cutting_2d_greedy_policy

Alternatively (and closer to a real training setting), you might want to first train an RL policy on the tutorial 2D cutting
environment:

$ maze-run -cn conf_train env=tutorial_cutting_2d_struct_masked
wrappers=tutorial_cutting_2d model=tutorial_cutting_2d_struct_masked

and then roll it out to collect the trajectory data (make sure to substitute the input_dir value for your actual training
output directory):

$ maze-run policy=torch_policy env=tutorial_cutting_2d_struct_masked
→˓wrappers=tutorial_cutting_2d \
model=tutorial_cutting_2d_struct_masked input_dir=outputs/[training-output-dir]

Once the rollout has run, take note of the outputs directory created by Hydra, where the trajectory data will be logged
– by default inside the trajectory_data subdirectory, one pickle file per episode (identified by a UUID generated
for each episode).

(Whether trajectory data is recorded during a rollout is set using the runner.record_trajectory flag, which
is on by default.)

3.3.3 Trajectory Visualization

Maze includes a Jupyter Notebook in evaluation/viewer.ipynb that will guide you through the process. You
only need to supply a path to the outputs directory where you trajectory data reside. The renderer will be automatically
built from the trajectory data.

(Note that the notebook also lists example trajectory data in case you do not have any on hand.)

Once an episode is selected and loaded, it is possible to skim back and forward in time using the notebook widgets
slider (controllable by mouse or keyboard).

220 Chapter 3. Documentation Overview

Maze

3.3.4 Where to Go Next

• To understand in more detail how to train a policy and then roll it out to collect trajectory data, check out
Trainings and Rollouts.

• Rendering and reviewing each time step in detail comes with a lot of overhead. In case you just want to see
and easily compare notable events that happened across different episodes, you might want to review the Event
system and how it is used to log statistics, KPIs, and raw events.

3.4 Imitation Learning and Fine-Tuning

Imitation learning refers to the task of learning a policy by imitating the behaviour of an existing teacher policy usually
represented as a fixed set of example trajectories. In some scenarios we might even have direct access to the actual
teacher policy itself allowing us to generate as many training trajectories as required. Imitation learning is especially
useful for initializing a policy to quick-start an actual training by interaction run or for settings where no training
environment is available at all (e.g., offline RL).

Overview:

3.4. Imitation Learning and Fine-Tuning 221

Maze

• Collect Training Trajectory Data

• Learn from Example Trajectories

• Fine-Tune a Pre-Trained Policy

• Where to Go Next

3.4.1 Collect Training Trajectory Data

This section explains how to rollout a policy for collecting example trajectories. As the training trajectories might be
already available (e.g., collected in practice) this step is optional.

As an example environment we pick the discrete version of the LunarLander environment as it already provides a
heuristic policy which we can use to collect or training trajectories for imitation learning.

But first let’s check if the policy actually does something meaningful by running a few rendering rollouts:

maze-run env.name=LunarLander-v2 policy=lunar_lander_heuristics \
runner=sequential runner.render=true runner.n_episodes=3

Hopefully this looks good and we can continue with actually collecting example trajectories for imitation learning.

The command bellow performs 3 rollouts of the heuristic policy and records them to the output directory.

maze-run env.name=LunarLander-v2 policy=lunar_lander_heuristics runner.n_episodes=3

You will get the following output summarizing the statistics of the rollouts.

step|path |
→˓ value
=====|==|================

1|rollout_stats DiscreteActionEvents action| substep_0/action |[len:583,
→˓ :1.2]

1|rollout_stats BaseEnvEvents reward| median_step_count |
→˓200.000

1|rollout_stats BaseEnvEvents reward| mean_step_count |
→˓194.333

1|rollout_stats BaseEnvEvents reward| total_step_count |
→˓583.000

1|rollout_stats BaseEnvEvents reward| total_episode_count |
→˓ 3.000

1|rollout_stats BaseEnvEvents reward| episode_count |
→˓ 3.000

1|rollout_stats BaseEnvEvents reward| std |
→˓ 51.350 (continues on next page)

222 Chapter 3. Documentation Overview

https://gym.openai.com/envs/LunarLander-v2

Maze

(continued from previous page)

1|rollout_stats BaseEnvEvents reward| mean |
→˓190.116

1|rollout_stats BaseEnvEvents reward| min |
→˓121.352

1|rollout_stats BaseEnvEvents reward| max |
→˓244.720

The trajectories will be dumped similar to the file structure shown below.

- outputs/<experiment_path>
- maze_cli.log
- event_logs
- trajectory_data

- 00653455-d7e2-4737-a82b-d6d1bfce12f7.pkl
- ...

The pickle files contain the distinct episodes recorded as a sequences of StepRecord objects each keeping the
trajectory data for one step (state, action, reward, . . .).

3.4.2 Learn from Example Trajectories

Given the trajectories recorded in the previous step we now train a policy with behavioral cloning, a simple version of
imitation learning.

To do so we simply provide the trajectory data as an argument and run:

maze-run -cn conf_train env.name=LunarLander-v2 model=vector_obs wrappers=vector_obs \
algorithm=bc runner.validation_percentage=50 \
runner.dataset.trajectory_data_dir=<absolute_experiment_path>/trajectory_data

...

********** Epoch 24: Iteration 1500 **********
step|path |
→˓value
=====|==|=========

96|train ImitationEvents discrete_accuracy 0/action | 0.
→˓948

96|train ImitationEvents policy_loss 0 | 0.
→˓150

96|train ImitationEvents policy_entropy 0 | 0.
→˓209

96|train ImitationEvents policy_l2_norm 0 | 42.
→˓416

96|train ImitationEvents policy_grad_norm 0 | 0.
→˓870
step|path |
→˓value
=====|==|=========

96|eval ImitationEvents discrete_accuracy 0/action | 0.
→˓947

96|eval ImitationEvents policy_loss 0 | 0.
→˓152

96|eval ImitationEvents policy_entropy 0 | 0.
→˓207
-> new overall best model -0.15179!

(continues on next page)

3.4. Imitation Learning and Fine-Tuning 223

Maze

(continued from previous page)

...

As with all trainers, we can watch the training progress with Tensorboard.

tensorboard --logdir outputs/

Once training is complete we can check how the behaviourally cloned policy performs in action.

maze-run env.name=LunarLander-v2 model=vector_obs wrappers=vector_obs \
policy=torch_policy input_dir=outputs/<imitation-learning-experiment>

step|path |
→˓ value
=====|===|=================

1|rollout_stats DiscreteActionEvents action substep_0/action |[len:8033,
→˓ :1.2]

1|rollout_stats BaseEnvEvents reward median_step_count |
→˓186.000

1|rollout_stats BaseEnvEvents reward mean_step_count |
→˓160.660

1|rollout_stats BaseEnvEvents reward total_step_count |
→˓8033.000

1|rollout_stats BaseEnvEvents reward total_episode_count |
→˓ 50.000

1|rollout_stats BaseEnvEvents reward episode_count |
→˓ 50.000

1|rollout_stats BaseEnvEvents reward std |
→˓111.266

1|rollout_stats BaseEnvEvents reward mean |
→˓101.243

1|rollout_stats BaseEnvEvents reward min | -
→˓164.563

1|rollout_stats BaseEnvEvents reward max |
→˓282.895

224 Chapter 3. Documentation Overview

Maze

With a mean reward of 101 this already looks like a promising starting point for RL fine-tuning.

3.4.3 Fine-Tune a Pre-Trained Policy

In the last section we show how to fine-tune the pre-trained policy with a model-free RL learner such as PPO. It is
basically a standard PPO training run initialized with the imitation learning output.

maze-run -cn conf_train env.name=LunarLander-v2 model=vector_obs critic=default_state
→˓wrappers=vector_obs \
algorithm=ppo runner.eval_repeats=100 runner.critic_burn_in_epochs=10 \
input_dir=outputs/<imitation-learning-experiment>

Once training started we can observe the progress with Tensorboard (for the sake of clarity of this example we renamed
the experiment directories for the screenshot below).

The Tensorboard log below compares the following experiments:

• a randomly initialized policy trained with learning rate 0.0 (random-PPO-lr0)

• a behavioural cloning pre-trained policy trained with learning rate 0.0 (pre_trained-PPO-lr0)

• a randomly initialized policy trained with PPO (from_scratch-PPO)

• a behavioural cloning pre-trained policy trained with PPO (pre_trained-PPO)

We also included training runs with a learning rate of 0.0 to get a feeling for the performance of the initial performance
of the two models (randomly initialized vs. pre-trained).

As expected, we see that PPO fine-tuning of the pretrained model starts at an initially much higher reward level
compared to the model trained entirely from scratch.

Although this is a quite simple example it is still a nice showcase for the usefulness of this two-stage learning paradigm.
For scenarios with delayed and/or sparse rewards following this principle is often crucial to get the RL trainer to start
learning at all.

3.4. Imitation Learning and Fine-Tuning 225

Maze

3.4.4 Where to Go Next

• You can find more details on training and rollouts on the dedicated pages.

• You can also read up on how to visualize recorded rollouts.

• For further details on the learning algorithms you can visit the Trainers page.

3.5 Introducing the Perception Module

One of the key ingredients for successfully training RL agents in complex environments is their combination with
powerful representation learners; in our case PyTorch-based neural networks. These enable the agent to perceive
all kinds of observations (e.g. images, audio waves, sensor data, . . .), unlocking the full potential of the underlying
RL-based learning systems.

Maze supports neural network building blocks via the Perception Module, which is responsible for transforming raw
observations into standardized, learned latent representations. These representations are then utilized by the Action
Spaces and Distributions Module to yield policy as well as critic outputs.

This page provides a general introduction into the Perception Module (which we recommend to read, of course).
However, you can also start using the module right away and jump to the template or custom models section.

3.5.1 List of Features

Below we list the key features and design choices of the perception module:

• Based on PyTorch.

• Supports dictionary observation spaces.

• Provides a large variety of neural network building blocks and model styles for customizing policy and value
networks:

– feed forward: dense, convolution, graph convolution and attention, . . .

– recurrent: LSTM, last-step-LSTM, . . .

– general purpose: action and observation masking, self-attention, concatenation, slicing, . . .

• Provides shape inference allowing to derive custom models directly from observation space definitions.

• Allows for environment specific customization of existing network templates per yaml configuration.

• Definition of complex networks explicitly in Python using Maze perception blocks and/or PyTorch.

• Generates detailed visualizations of policy and value networks (model graphs) containing the perception build-
ing blocks as well as all intermediate representation produced.

• Can be easily extended with custom network components if necessary.

226 Chapter 3. Documentation Overview

https://pytorch.org/

Maze

3.5.2 Perception Blocks

Perception blocks are components for composing models such as policy and value networks within Maze. They
implement PyTorch’s nn.Module interface and encapsulate neural network functionality into distinct, reusable units.
In order to handle all our requirements (listed in the motivation below), every perception block expects a tensor
dictionary as input and produce a tensor dictionary again as an output.

Maze already supports a number of built-in neural network building blocks which are, like all other components, easily
extendable.

Motivation: Maze introduces perception blocks to extend PyTorch’s nn.Module with shape inference to support the
following features:

1. To derive, generate and customize template models directly from observation and action space definitions.

2. To visualize models and how these process observations to ultimately arrive at an action or value prediction.

3. To seamlessly apply models at different stages of the RL development processes without the need for extensive
input reshaping regardless if we perform a distributed training using parallel rollout workers or if we deploy a
single agent in production. The figure below shows a few examples of such scenarios.

3.5.3 Inference Blocks

The InferenceBlock, a special perception block, combines multiple perception blocks into one prediction module. This
is convenient and allows us to easily reuse semantically connected parts of our models but also enables us to derive
and visualize inference graphs of these models. This is feasible as perception blocks operate with input and output
tensor dictionaries, which can be easily linked to an inference graph.

The figure below shows a simple example of how such a graph can look like.

3.5. Introducing the Perception Module 227

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

Maze

Details:

• The model depicted in the figure above takes two observations as inputs:

228 Chapter 3. Documentation Overview

Maze

– obs_inventory : a 16-dimensional feature vector

– obs_screen : a 64 x 64 RGB image

• obs_inventory is processed by a DenseBlock resulting in a 32-dimensional latent representation.

• obs_screen is processed by a VGG-style model resulting in a 32-dimensional latent representation.

• Next, these two representations are concatenated into a joint representation with dimension 64.

• Finally we have two LinearOutputBlocks yielding the logits for two distinct action heads:

– action_move : a categorical action deciding to move [UP, DOWN, LEFT, RIGHT],

– action_use : a multi-binary action deciding which item to use from inventory.

Comments on visualization: Blue boxes are blocks, while red ones are tensors. The color depth of blocks (blue)
indicates the number of the parameters relative to the total number of parameters.

3.5.4 Model Composers

Model Composers, as the name suggest, compose the models and as such bring all components of the perception
module together under one roof. In particular, they hold:

• Definitions of observation and actions spaces.

• All defined models, that is, policies (multiple ones in multi-step scenarios) and critics (multiple ones in multi-
step scenarios depending on the critic type).

• The Distribution Mapper, mapping (possible custom) probability distributions to action spaces.

Maze supports different types of model composers and we will show how to work with template and custom models in
detail later on.

3.5.5 Implementing Custom Perception Blocks

In case you would like to implement and use custom components when designing your models you can add new blocks
by implementing:

• The PerceptionBlock interface common for all perception blocks.

• The ShapeNormalizationBlock interface normalizing the input and de-normalizing the output tensor dimensions
if required for your block (optional).

• The respective forward pass of your block.

The code-snippet below shows a simple toy-example block, wrapping a linear layer into a Maze perception block.

"""Contains a single linear layer block."""
import builtins
from typing import Union, List, Sequence, Dict

import torch
from torch import nn as nn

from maze.core.annotations import override
from maze.perception.blocks.shape_normalization import ShapeNormalizationBlock

Number = Union[builtins.int, builtins.float, builtins.bool]

(continues on next page)

3.5. Introducing the Perception Module 229

Maze

(continued from previous page)

class MyLinearBlock(ShapeNormalizationBlock):
"""A linear output block holding a single linear layer.

:param in_keys: One key identifying the input tensors.
:param out_keys: One key identifying the output tensors.
:param in_shapes: List of input shapes.
:param output_units: Count of output units.
"""

def __init__(self,
in_keys: Union[str, List[str]],
out_keys: Union[str, List[str]],
in_shapes: Union[Sequence[int], List[Sequence[int]]],
output_units: int):

super().__init__(in_keys=in_keys, out_keys=out_keys, in_shapes=in_shapes, in_
→˓num_dims=2, out_num_dims=2)

self.input_units = self.in_shapes[0][-1]
self.output_units = output_units

initialize the linear layer
self.net = nn.Linear(self.input_units, self.output_units)

@override(ShapeNormalizationBlock)
def normalized_forward(self, block_input: Dict[str, torch.Tensor]) -> Dict[str,

→˓torch.Tensor]:
"""implementation of :class:`~maze.perception.blocks.shape_normalization.

→˓ShapeNormalizationBlock` interface
"""
extract the input tensor of the first (and here only) input key
input_tensor = block_input[self.in_keys[0]]
apply the linear layer
output_tensor = self.net(input_tensor)
return the output tensor as a tensor dictionary
return {self.out_keys[0]: output_tensor}

def __repr__(self):
"""This is the text shown in the graph visualization."""
txt = self.__class__.__name__
txt += f"\nOut Shapes: {self.out_shapes()}"
return txt

3.5.6 The Bigger Picture

The figure below shows how the components introduced in the perception module relate to each other.

230 Chapter 3. Documentation Overview

Maze

3.5.7 Where to Go Next

• For further details please see the reference documentation.

• Action Spaces and Distributions

• Working with template models

• Working with custom models

• Pre-processing and observation normalization

3.6 Action Spaces and Distributions

In response to the states perceived and rewards received, RL agents interact with their environment by taking appro-
priate actions. Depending on the problem at hand there are different types of actions an agent must be able to deal with
(e.g. categorical, binary, continuous, . . .).

To support this requirement Maze introduces the Distribution Module which builds on top of the Perception Module
allowing to fully customize which probability distributions to link with certain action spaces or even individual action
heads.

3.6.1 List of Features

The distribution module provides the following key features:

• Supports flat dictionary action spaces (nested dict spaces are not yet supported)

• Supports a variety of different action spaces and probability distributions

• Supports customization of which probability distribution to use for which action space or head

• Supports action masking in combination with the perception module

• Allows to add and register new probability distributions whenever required

3.6. Action Spaces and Distributions 231

Maze

3.6.2 Action Spaces and Probability Distributions

Maze so far supports the following action space - probability distribution combinations.

Action Space Available Distributions
Discrete Categorical (default)
Multi-Discrete Multi-Categorical (default)
Multi-binary Bernoulli (default)
Box (Continuous) Diagonal-Gaussian (default), Beta, Squashed-Gaussian
Dict DictProbabilityDistribution (default)

The DictProbabilityDistribution combines any of the other action spaces and distributions into a joint action space in
case you agent has to interact with the environment via different action space types at the same time.

Note that the table above does not always follow a one-to-one mapping. In case of a Box (Continuous) action space
for example you can choose between a Diagonal-Gaussian distribution in case of an unbounded action space or a Beta
or a Squashed-Gaussian distribution in case of a bounded action space. In other cases you might even want to add
additional probability distributions according to the nature of the environment you are facing.

To allow for easy customization of the links between action spaces and distributions Maze introduces the Distribu-
tionMapper for which we show usage examples below.

3.6.3 Example 1: Mapping Action Spaces to Distributions

Adding the snippet below to your model config specifies the following:

• Use Beta distributions for all Box action spaces.

• All other action spaces behave as specified in the defaults.

@package model
distribution_mapper_config:
- action_space: gym.spaces.Box
distribution: maze.distributions.beta.BetaProbabilityDistribution

3.6.4 Example 2: Mapping Actions to Distributions

Adding the snippet below to your model config specifies the following:

• Use Beta distributions for all Box action spaces.

• Use a Squashed-Gaussian distributions for the action with key “special_action”.

• All other action spaces behave as specified in the defaults.

@package model
distribution_mapper_config:
- action_space: gym.spaces.Box
distribution: maze.distributions.beta.BetaProbabilityDistribution

- action_head: special_action
distribution: maze.distributions.squashed_gaussian.

→˓SquashedGaussianProbabilityDistribution

When specifying custom behaviour for distinct action heads make sure to add them below the more general action
space configurations (e.g. get more specific from top to bottom).

232 Chapter 3. Documentation Overview

Maze

3.6.5 Example 3: Using Custom Distributions

In case the probability distributions contained in Maze are not sufficient for your use case you can of course add
additional custom probability distributions.

@package model
distribution_mapper_config:
- action_space: gym.spaces.Discrete
distribution: my_package.maze_extentions.distributions.

→˓CustomCategoricalProbabilityDistribution

The example above defines to use a CustomCategoricalProbabilityDistribution for all discrete action spaces. When
adding a new distribution you (1) have to implement the ProbabilityDistribution interface and (2) make sure that
it is accessible within your python path. Besides that you only have to provide the reference path of the probability
distribution you would like to use.

3.6.6 The Bigger Picture

The figure below relates the distribution module with the overall workflow.

The distribution mapper takes the (dictionary) action space as an input and links the action spaces with the respective
probability distributions specified in the config. Action logits are learned on top of the representation produced by the
perception module where each probability distribution specifies its expected logits shape.

3.6.7 Where to Go Next

• For further details please see the reference documentation.

• Processing raw observations with the Maze Perception Module.

• Customizing models with Hydra.

3.6. Action Spaces and Distributions 233

Maze

3.7 Working with Template Models

The Maze template model composer allows us to compose policy and value networks directly from an environment’s
observation and action space specification according to a selected model template and a corresponding model config.
The central part of a template model composer is the Model Builder holding an Inference Block template (architecture
template), which is then instantiated according to the config.

Next, we will introduce the general working principles. However, you can of course directly jump to the examples
below to see how to build a feed forward as well as a recurrent policy network using the ConcatModelBuilder or check
out how to work with simple single observation and action environments.

3.7.1 List of Features

A template model supports the following features:

• Works with dictionary observation spaces.

• Maps individual observations to modalities via the Observation Modality Mapping.

• Allows to individually assign Perception Blocks to modalities via the Modality Config.

• Allows to pick architecture templates defining the underlying modal structure via Maze Model Builders.

• Cooperates with the Distributions Module supporting customization of action and value outputs.

Note: Maze so far does not support “end-to-end” default behaviour but instead provides config templates, which
can be adopted to the respective needs. We opted for this route as complete defaults might lead to unintended and
non-transparent results.

3.7.2 Model Builders (Architecture Templates)

This section lists and describes the available Model Builder architectures templates. Before we describe the builder
instances in more detail we provide some information on the available block types:

• Fixed: these blocks are fixed and are applied by the model builder per default.

• Preset: these blocks are predefined for the respective model builder. They are basically place holders for which
you can specify the perception blocks they should hold.

• Custom: these blocks are introduced by the user for processing the respective observation modalities (types)
such as features or images.

ConcatModelBuilder (Reference Documentation)

234 Chapter 3. Documentation Overview

Maze

Model builder details:

• Processes the individual observations with modality blocks (custom).

• Joins the respective modality hidden representations via a concatenation block (fixed).

• The resulting representation is then further processed by the hidden and recurrence block (preset).

3.7.3 Example 1: Feed Forward Models

In this example we utilize the ConcatModelBuilder to compose a feed forward actor-critic model processing two
observations for predicting two actions and one critic (value) output.

Observation Space:

• observation_inventory : a 16-dimensional feature vector

• observation_screen : a 64 x 64 RGB image

Action Space:

• action_move : a categorical action with four options deciding to move [UP, DOWN, LEFT, RIGHT]

• action_use : a 16-dimensional multi-binary action deciding which item to use from inventory

The model config is defined as:

@package model
type: maze.perception.models.default_model_composer.DefaultModelComposer

specify distribution mapping
(here we use a default distribution mapping)
distribution_mapper_config: {}

specifies the architecture of default models
(continues on next page)

3.7. Working with Template Models 235

Maze

(continued from previous page)

model_builder:
type: maze.perception.builders.ConcatModelBuilder

specifies the modality type of each observation
observation_modality_mapping:
observation_inventory: feature
observation_screen: image

specifies with which block to process a modality
modality_config:
modality processing
feature:
block_type: maze.perception.blocks.DenseBlock
block_params:
hidden_units: [32, 32]
non_lin: torch.nn.ReLU

image:
block_type: maze.perception.blocks.VGGConvolutionDenseBlock
block_params:
hidden_channels: [8, 16, 32]
hidden_units: [32]
non_lin: torch.nn.ReLU

preserved keys for the model builder
hidden:

block_type: maze.perception.blocks.DenseBlock
block_params:
hidden_units: [128]
non_lin: torch.nn.ReLU

recurrence: {}

select policy type
policy:

type: maze.perception.models.policies.ProbabilisticPolicyComposer

select critic type
critic:

type: maze.perception.models.critics.StateCriticComposer

Details:

• Models are composed by the Maze TemplateModelComposer.

• No specific action space and probability distribution overrides are specified.

• The model is based on the ConcatModelBuilder architecture template.

• Observation observation_inventory is mapped to the user specified custom modality feature.

• Observation observation_screen is mapped to the user specified custom modality image.

• Modality Config:

– Modalities of type feature are processed with a DenseBlock.

– Modalities of type image are processed with a VGGConvolutionDenseBlock.

– The concatenated joint spaces is processed with another DenseBlock.

– No recurrence is employed.

The resulting inference graphs for an actor-critic model are shown below:

236 Chapter 3. Documentation Overview

Maze

3.7.4 Example 2: Recurrent Models

In this example we utilize the ConcatModelBuilder to compose a recurrent actor-critic model for the the previous
example.

@package model
type: maze.perception.models.default_model_composer.DefaultModelComposer

specify distribution mapping
(here we use a default distribution mapping)
distribution_mapper_config: {}

(continues on next page)

3.7. Working with Template Models 237

Maze

(continued from previous page)

specifies the architecture of default models
model_builder:

type: maze.perception.builders.ConcatModelBuilder

specifies the modality type of each observation
observation_modality_mapping:
observation_inventory: feature
observation_screen: image

specifies with which block to process a modality
modality_config:
modality processing
feature:
block_type: maze.perception.blocks.DenseBlock
block_params:
hidden_units: [32, 32]
non_lin: torch.nn.ReLU

image:
block_type: maze.perception.blocks.VGGConvolutionDenseBlock
block_params:
hidden_channels: [8, 16, 32]
hidden_units: [32]
non_lin: torch.nn.ReLU

preserved keys for the model builder
hidden:

block_type: maze.perception.blocks.DenseBlock
block_params:
hidden_units: [128]
non_lin: torch.nn.ReLU

recurrence:
block_type: maze.perception.blocks.LSTMLastStepBlock
block_params:
hidden_size: 32
num_layers: 1
bidirectional: False
non_lin: torch.nn.SELU

select policy type
policy:

type: maze.perception.models.policies.ProbabilisticPolicyComposer

select critic type
critic:

type: maze.perception.models.critics.StateCriticComposer

Details:

• The main part of the model is identical to the example above.

• However, the example adds an additional recurrent block (LSTMLastStepBlock) considering not only the
present but also the k previous time steps for its action and value predictions.

The resulting inference graphs for a recurrent actor-critic model are shown below:

238 Chapter 3. Documentation Overview

Maze

3.7.5 Example 3: Single Observation and Action Models

Even though designed for more complex models which process multiple observations and prediction multiple actions
at the same time you can of course also compose models for simpler use cases.

In this example we utilize the ConcatModelBuilder to compose an actor-critic model for OpenAI Gym’s CartPole Env.
CartPole has an observation space with dimensionality four and a discrete action spaces with two options.

The model config is defined as:

@package model
type: maze.perception.models.default_model_composer.DefaultModelComposer

(continues on next page)

3.7. Working with Template Models 239

https://gym.openai.com/envs/CartPole-v0/

Maze

(continued from previous page)

specify distribution mapping
(here we use a default distribution mapping)
distribution_mapper_config: {}

specifies the architecture of default models
model_builder:

type: maze.perception.builders.ConcatModelBuilder

specifies the modality type of each observation
observation_modality_mapping:
observation: feature

specifies with which block to process a modality
modality_config:
modality processing
feature:
block_type: maze.perception.blocks.DenseBlock
block_params:
hidden_units: [32, 32]
non_lin: torch.nn.ReLU

preserved keys for the model builder
hidden: {}
recurrence: {}

select policy type
policy:

type: maze.perception.models.policies.ProbabilisticPolicyComposer

select critic type
critic:

type: maze.perception.models.critics.StateCriticComposer

The resulting inference graphs for an actor-critic model are shown below:

240 Chapter 3. Documentation Overview

Maze

Details:

• When there is only one observation, as for the present example, concatenation acts simply as an identity mapping
of the previous output tensor (in this case observation_DenseBlock).

3.7.6 Where to Go Next

• You can read up on our general introduction to the Perception Module.

• Here we explain how to define and work with custom models in case the template models are not sufficient.

3.8 Working with Custom Models

The Maze custom model composer enables us to explicitly specify application specific models directly in Python.
Models can be either written with Maze perception blocks or with plain PyTorch as long as they inherit from Pytorch’s
nn.Model.

As such models can be easily created, and even existing models from previous work or well known papers can be
easily reused with minor adjustments. However, we recommend to create models using the predefined perception
blocks in order to speed up writing as well as to take full advantage of features such as shape inference and graphical
rendering of the models.

On this page we will first go over the features as well as general working principles. Afterwards we will demonstrate
the custom model composer with three examples:

• A simple feed forward model for cartpole.

• A more complex recurrent network example.

• The cartpole example again but this time using plain PyTorch (that is, no Maze-Perception Blocks).

3.8. Working with Custom Models 241

https://pytorch.org/docs/stable/generated/torch.nn.Module.html

Maze

3.8.1 List of Features

The custom model composer supports the following features:

• Specify complex models directly in Python.

• Supports shape inference and shape checks for a given observation space when relying on Maze perception
blocks.

• Reuse existing PyTorch nn.Models with minor modifications.

• Stores a graphical rendering of the networks if the inference block is utilized.

Note: All model composers have the single purpose of composing, testing and visualizing the models in code or from
a config file. After all models have been created and retrieved the model composer will have served its purpose and is
deleted.

3.8.2 The Custom Models Signature (on Action and Observation Shapes)

As previously mentioned the constraints we impose on any model used in conjunction with the custom model com-
poser are twofold: Firstly the network class has to inherit from PyTorch’s nn.Model in order to inherit all network
specific methods and properties such as the forward method. Additionally a given network class has to have specified
constructor arguments depending on the type of network.

Policy Networks must have the constructor arguments obs_shapes and action_logits_shapes. When the models are
built in the constructor of the custom model composer these two arguments are passed to the constructor of the model
in addition to any other arbitrary arguments specified. As the name suggests obs_shapes is a dictionary mapping
observation names to their corresponding shapes represented as a sequence of integers. Similarly action_logits_shapes
is a dictionary that maps action names to their corresponding action distribution logits shapes. (These shapes are also
represented as a sequence of integers.) Both, observation and action logits shapes are inferred in the model composer
utilizing the observation_spaces_dict, action_spaces_dict and distribution_mapper.

Critic Networks require only the constructor argument obs_shapes. Any other constructor argument is free for the
user to specify.

To summarize the constraints we impose on custom models:

• Policy Networks:

– inherit from nn.Model

242 Chapter 3. Documentation Overview

https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html

Maze

– constructor arguments: obs_shapes and action_logits_shapes

• Critic Networks:

– inherit from nn.Model

– constructor arguments: obs_shapes

3.8.3 Example 1: Simple Custom Networks with Perception Blocks

Even though designed for more complex models that process multiple observations and predict multiple actions at the
same time you can also compose models for simpler use cases, of course.

In this example we utilize the custom model composer in combination with the perception blocks to compose an actor-
critic model for OpenAI Gym’s CartPole Env using a single dense block in each network. CartPole has an observation
space with dimensionality four and a discrete action space with two options.

The policy model can then be defined as:

"""Shows how to use the custom model composer to build a custom policy network."""
from collections import OrderedDict
from typing import Dict, Union, Sequence, List

import numpy as np
import torch
import torch.nn as nn

from maze.perception.blocks.feed_forward.dense import DenseBlock
from maze.perception.blocks.inference import InferenceBlock
from maze.perception.blocks.output.linear import LinearOutputBlock
from maze.perception.weight_init import make_module_init_normc

class CustomCarpolePolicyNet(nn.Module):
"""Simple feed forward policy network.

:param obs_shapes: The shapes of all observations as a dict.
:param action_logits_shapes: The shapes of all actions as a dict structure.
:param non_lin: The nonlinear activation to be used.
:param hidden_units: A list of units per hidden layer.
"""

def __init__(self, obs_shapes: Dict[str, Sequence[int]], action_logits_shapes:
→˓Dict[str, Sequence[int]],

non_lin: Union[str, type(nn.Module)], hidden_units: List[int]):
super().__init__()

Maze relies on dictionaries to represent the inference graph
self.perception_dict = OrderedDict()

build latent embedding block
self.perception_dict['latent'] = DenseBlock(

in_keys='observation', out_keys='latent', in_shapes=obs_shapes[
→˓'observation'],

hidden_units=hidden_units,non_lin=non_lin)

build action head
self.perception_dict['action'] = LinearOutputBlock(

(continues on next page)

3.8. Working with Custom Models 243

https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://gym.openai.com/envs/CartPole-v0/

Maze

(continued from previous page)

in_keys='latent', out_keys='action', in_shapes=self.perception_dict[
→˓'latent'].out_shapes(),

output_units=int(np.prod(action_logits_shapes["action"])))

build inference block
self.perception_net = InferenceBlock(

in_keys='observation', out_keys='action', in_shapes=obs_shapes[
→˓'observation'],

perception_blocks=self.perception_dict)

apply weight init
self.perception_net.apply(make_module_init_normc(1.0))
self.perception_dict['action'].apply(make_module_init_normc(0.01))

def forward(self, in_tensor_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.
→˓Tensor]:

"""Compute forward pass through the network.

:param in_tensor_dict: Input tensor dict.
:return: The computed output of the network.
"""
return self.perception_net(in_tensor_dict)

And the critic model as:

"""Shows how to use the custom model composer to build a custom value network."""
from collections import OrderedDict
from typing import Dict, Union, Sequence, List

import torch
import torch.nn as nn

from maze.perception.blocks.feed_forward.dense import DenseBlock
from maze.perception.blocks.inference import InferenceBlock
from maze.perception.blocks.output.linear import LinearOutputBlock
from maze.perception.weight_init import make_module_init_normc

class CustomCarpoleCriticNet(nn.Module):
"""Simple feed forward critic network.

:param obs_shapes: The shapes of all observations as a dict.
:param non_lin: The nonlinear activation to be used.
:param hidden_units: A list of units per hidden layer.
"""

def __init__(self, obs_shapes: Dict[str, Sequence[int]], non_lin: Union[str,
→˓type(nn.Module)],

hidden_units: List[int]):
super().__init__()

Maze relies on dictionaries to represent the inference graph
self.perception_dict = OrderedDict()

build latent embedding block
self.perception_dict['latent'] = DenseBlock(

in_keys='observation', out_keys='latent', in_shapes=obs_shapes[
→˓'observation'], hidden_units=hidden_units, (continues on next page)

244 Chapter 3. Documentation Overview

Maze

(continued from previous page)

non_lin=non_lin)

build action head
self.perception_dict['value'] = LinearOutputBlock(

in_keys='latent', out_keys='value', in_shapes=self.perception_dict['latent
→˓'].out_shapes(), output_units=1)

build inference block
self.perception_net = InferenceBlock(

in_keys='observation', out_keys='value', in_shapes=obs_shapes['observation
→˓'],

perception_blocks=self.perception_dict)

apply weight init
self.perception_net.apply(make_module_init_normc(1.0))
self.perception_dict['value'].apply(make_module_init_normc(0.01))

def forward(self, in_tensor_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.
→˓Tensor]:

"""Compute forward pass through the network.

:param in_tensor_dict: Input tensor dict.
:return: The computed output of the network.
"""
return self.perception_net(in_tensor_dict)

An example config for the model composer could then look like this:

@package model

specify the custom model composer by reference
type: maze.perception.models.custom_model_composer.CustomModelComposer

Specify distribution mapping
(here we use a default distribution mapping)
distribution_mapper_config: {}

policy:
first specify the policy type
type: maze.perception.models.policies.ProbabilisticPolicyComposer
specify the policy network(s) we would like to use, by reference
networks:
- type: docs.source.policy_and_value_networks.code_snippets.custom_cartpole_policy_

→˓net.CustomCarpolePolicyNet
specify the parameters of our model
non_lin: torch.nn.ReLU
hidden_units: [16, 32]

critic:
first specify the critic type (here a state value critic)
type: maze.perception.models.critics.StateCriticComposer
specify the critic network(s) we would like to use, by reference
networks:
- type: docs.source.policy_and_value_networks.code_snippets.custom_cartpole_

→˓critic_net.CustomCarpoleCriticNet
specify the parameters of our model
non_lin: torch.nn.ReLU

(continues on next page)

3.8. Working with Custom Models 245

Maze

(continued from previous page)

hidden_units: [16, 32]

Details:

• Models are composed by the CustomModelComposer.

• No specific action space and probability distribution overrides are specified.

• Since we are in a single step environment we only have one policy. Additionally we specify the constructor
arguments we defined in the python code above.

• For critics we specify the type to be single-step since we are working with a single step environment. Further-
more, the network and its constructor arguments are specified.

Note: Although mentioned previously, we want to point out the constructor arguments of the two models again:
the policy network has the required arguments obs_shapes and action_logits_shapes in addition to the custom argu-
ments non_lin and hidden_units. The critic network has only the required argument obs_shapes and the same custom
arguments as the policy network.

The resulting inference graphs for a recurrent actor-critic model are shown below:

246 Chapter 3. Documentation Overview

Maze

3.8.4 Example 2: More Complex Custom Networks with Perception Blocks

Now we will consider the more complex example used in the examples of the template model composer.

The observation space is defined as:

• observation_screen : a 64 x 64 RGB image

• observation_inventory : a 16-dimensional feature vector

The action space is defined as:

• action_move : a categorical action with four options deciding to move [UP, DOWN, LEFT, RIGHT]

• action_use : a 16-dimensional multi-binary action deciding which item to use from inventory

Since we are interested in building a policy and critic network, where both networks should have the same embedding
structure we can create a base or latent space template:

"""Shows how to use the custom model composer to build a complex custom embedding
→˓networks."""
from collections import OrderedDict
from typing import Dict, Union, Sequence, List

import torch.nn as nn

from maze.perception.blocks.feed_forward.dense import DenseBlock
from maze.perception.blocks.general.concat import ConcatenationBlock
from maze.perception.blocks.joint_blocks.lstm_last_step import LSTMLastStepBlock
from maze.perception.blocks.joint_blocks.vgg_conv_dense import
→˓VGGConvolutionDenseBlock

class CustomComplexLatentNet:
"""Simple feed forward policy network.

:param obs_shapes: The shapes of all observations as a dict.
:param non_lin: The nonlinear activation to be used.
:param hidden_units: A list of units per hidden layer.

(continues on next page)

3.8. Working with Custom Models 247

Maze

(continued from previous page)

"""

def __init__(self, obs_shapes: Dict[str, Sequence[int]],
non_lin: Union[str, type(nn.Module)], hidden_units: List[int]):

self.obs_shapes = obs_shapes

Maze relies on dictionaries to represent the inference graph
self.perception_dict = OrderedDict()

build latent feature embedding block
self.perception_dict['latent_inventory'] = DenseBlock(

in_keys='observation_inventory', out_keys='latent_inventory', in_
→˓shapes=obs_shapes['observation_inventory'],

hidden_units=[128], non_lin=non_lin)

build latent pixel embedding block
self.perception_dict['latent_screen'] = VGGConvolutionDenseBlock(

in_keys='observation_screen', out_keys='latent_screen', in_shapes=obs_
→˓shapes['observation_screen'],

non_lin=non_lin, hidden_channels=[8, 16, 32], hidden_units=[32])

Concatenate latent features
self.perception_dict['latent_concat'] = ConcatenationBlock(

in_keys=['latent_inventory', 'latent_screen'], out_keys='latent_concat',
in_shapes=self.perception_dict['latent_inventory'].out_shapes() +
self.perception_dict['latent_screen'].out_shapes(), concat_dim=-1)

Add latent dense block
self.perception_dict['latent_dense'] = DenseBlock(

in_keys='latent_concat', out_keys='latent_dense', hidden_units=hidden_
→˓units, non_lin=non_lin,

in_shapes=self.perception_dict['latent_concat'].out_shapes()
)

Add recurrent block
self.perception_dict['latent'] = LSTMLastStepBlock(

in_keys='latent_dense', out_keys='latent', in_shapes=self.perception_dict[
→˓'latent_dense'].out_shapes(),

hidden_size=32, num_layers=1, bidirectional=False, non_lin=non_lin
)

Now using the template we can create the policy:

"""Shows how to use the custom model composer to build a complex custom policy
→˓networks."""
from typing import Dict, Union, Sequence, List

import numpy as np
import torch
import torch.nn as nn

from docs.source.policy_and_value_networks.code_snippets.custom_complex_latent_net
→˓import \

CustomComplexLatentNet
from maze.perception.blocks.inference import InferenceBlock
from maze.perception.blocks.output.linear import LinearOutputBlock
from maze.perception.weight_init import make_module_init_normc

(continues on next page)

248 Chapter 3. Documentation Overview

Maze

(continued from previous page)

class CustomComplexPolicyNet(nn.Module, CustomComplexLatentNet):
"""Simple feed forward policy network.

:param obs_shapes: The shapes of all observations as a dict.
:param action_logits_shapes: The shapes of all actions as a dict structure.
:param non_lin: The nonlinear activation to be used.
:param hidden_units: A list of units per hidden layer.
"""

def __init__(self, obs_shapes: Dict[str, Sequence[int]], action_logits_shapes:
→˓Dict[str, Sequence[int]],

non_lin: Union[str, type(nn.Module)], hidden_units: List[int]):
nn.Module.__init__(self)
CustomComplexLatentNet.__init__(self, obs_shapes, non_lin, hidden_units)

build action heads
for action_key, action_shape in action_logits_shapes.items():

self.perception_dict[action_key] = LinearOutputBlock(
in_keys='latent', out_keys=action_key, in_shapes=self.perception_dict[

→˓'latent'].out_shapes(),
output_units=int(np.prod(action_shape)))

build inference block
in_keys = list(self.obs_shapes.keys())
self.perception_net = InferenceBlock(

in_keys=in_keys, out_keys=list(action_logits_shapes.keys()), perception_
→˓blocks=self.perception_dict,

in_shapes=[self.obs_shapes[key] for key in in_keys])

apply weight init
self.perception_net.apply(make_module_init_normc(1.0))
for action_key in action_logits_shapes.keys():

self.perception_dict[action_key].apply(make_module_init_normc(0.01))

def forward(self, in_tensor_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.
→˓Tensor]:

"""Compute forward pass through the network.

:param in_tensor_dict: Input tensor dict.
:return: The computed output of the network.
"""
return self.perception_net(in_tensor_dict)

And the critic:

"""Shows how to use the custom model composer to build a complex custom value
→˓networks."""
from typing import Dict, Union, Sequence, List

import torch
import torch.nn as nn

from docs.source.policy_and_value_networks.code_snippets.custom_complex_latent_net
→˓import \

CustomComplexLatentNet
(continues on next page)

3.8. Working with Custom Models 249

Maze

(continued from previous page)

from maze.perception.blocks.inference import InferenceBlock
from maze.perception.blocks.output.linear import LinearOutputBlock
from maze.perception.weight_init import make_module_init_normc

class CustomComplexCriticNet(nn.Module, CustomComplexLatentNet):
"""Simple feed forward policy network.

:param obs_shapes: The shapes of all observations as a dict.
:param non_lin: The nonlinear activation to be used.
:param hidden_units: A list of units per hidden layer.
"""

def __init__(self, obs_shapes: Dict[str, Sequence[int]],
non_lin: Union[str, type(nn.Module)], hidden_units: List[int]):

nn.Module.__init__(self)
CustomComplexLatentNet.__init__(self, obs_shapes, non_lin, hidden_units)

build action heads
self.perception_dict['value'] = LinearOutputBlock(

in_keys='latent', out_keys='value', in_shapes=self.perception_dict['latent
→˓'].out_shapes(),

output_units=1)

build inference block
in_keys = list(self.obs_shapes.keys())
self.perception_net = InferenceBlock(

in_keys=in_keys, out_keys='value', in_shapes=[self.obs_shapes[key] for
→˓key in in_keys],

perception_blocks=self.perception_dict)

apply weight init
self.perception_net.apply(make_module_init_normc(1.0))
self.perception_dict['value'].apply(make_module_init_normc(0.01))

def forward(self, in_tensor_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.
→˓Tensor]:

"""Compute forward pass through the network.

:param in_tensor_dict: Input tensor dict.
:return: The computed output of the network.
"""
return self.perception_net(in_tensor_dict)

An example config for the model composer could then look like this:

@package model

specify the custom model composer by reference
type: maze.perception.models.custom_model_composer.CustomModelComposer

Specify distribution mapping
(here we use a default distribution mapping)
distribution_mapper_config: {}

policy:
type: maze.perception.models.policies.ProbabilisticPolicyComposer

(continues on next page)

250 Chapter 3. Documentation Overview

Maze

(continued from previous page)

networks:
specify the policy network we would like to use, by reference
- type: docs.source.policy_and_value_networks.code_snippets.custom_complex_policy_

→˓net.CustomComplexPolicyNet
specify the parameters of our model
non_lin: torch.nn.ReLU
hidden_units: [128]

critic:
first specify the critic type (single step in this example)
type: maze.perception.models.critics.StateCriticComposer
networks:
specify the critic we would like to use, by reference
- type: docs.source.policy_and_value_networks.code_snippets.custom_complex_critic_

→˓net.CustomComplexCriticNet
specify the parameters of our model
non_lin: torch.nn.ReLU
hidden_units: [128]

The resulting inference graphs for a recurrent actor-critic model are shown below. Note that the models are identical
except for the output layers due to the shared base model.

3.8. Working with Custom Models 251

Maze

3.8.5 Example 3: Custom Networks with (plain PyTorch) Python

Finally, let’s have a look at how we can create a custom model without using any Maze-Perception Components. As
already mentioned, we still have to specify the constructor arguments obs_shapes and action_logits_shapes but do not
need to use them. Considering again OpenAI Gym’s CartPole Env the models could look like this:

The policy model:

"""Shows how to create a custom cartpole model using no maze perception components."""
from typing import Dict, Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F

class CustomPlainCartpolePolicyNet(nn.Module):
"""Simple feed forward policy network.

:param obs_shapes: The shapes of all observations as a dict.
:param action_logits_shapes: The shapes of all actions as a dict structure.
:param hidden_layer_0: The number of units in layer 0.
:param hidden_layer_1: The number of units in layer 1.
:param use_bias: Specify whether to use a bias in the linear layers.

(continues on next page)

252 Chapter 3. Documentation Overview

https://gym.openai.com/envs/CartPole-v0/

Maze

(continued from previous page)

"""
def __init__(self, obs_shapes: Dict[str, Sequence[int]], action_logits_shapes:

→˓Dict[str, Sequence[int]],
hidden_layer_0: int, hidden_layer_1: int, use_bias: bool):

nn.Module.__init__(self)

self.observation_name = list(obs_shapes.keys())[0]
self.action_name = list(action_logits_shapes.keys())[0]

self.l0 = nn.Linear(4, hidden_layer_0, bias=use_bias)
self.l1 = nn.Linear(hidden_layer_0, hidden_layer_1, bias=use_bias)
self.l2 = nn.Linear(hidden_layer_1, 2, bias=use_bias)

def reset_parameters(self) -> None:
"""Reset the parameters of the Model"""

self.l0.reset_parameters()
self.l1.reset_parameters()
self.l1.reset_parameters()

def forward(self, in_tensor_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.
→˓Tensor]:

"""Compute forward pass through the network.

:param in_tensor_dict: Input tensor dict.
:return: The computed output of the network.
"""
Retrieve the observation tensor from the input dict
xx_tensor = in_tensor_dict[self.observation_name]

Compute the forward pass thorough the network
xx_tensor = F.relu(self.l0(xx_tensor))
xx_tensor = F.relu(self.l1(xx_tensor))
xx_tensor = self.l2(xx_tensor)

Create the output dictionary with the computed model output
out = dict({self.action_name: xx_tensor})
return out

And the critic model as:

"""Shows how to create a custom cartpole model using no maze perception components."""
from typing import Dict, Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F

class CustomPlainCartpoleCriticNet(nn.Module):
"""Simple feed forward critic network.

:param obs_shapes: The shapes of all observations as a dict.
:param hidden_layer_0: The number of units in layer 0.
:param hidden_layer_1: The number of units in layer 1.
:param use_bias: Specify whether to use a bias in the linear layers.
"""

(continues on next page)

3.8. Working with Custom Models 253

Maze

(continued from previous page)

def __init__(self, obs_shapes: Dict[str, Sequence[int]],
hidden_layer_0: int, hidden_layer_1: int, use_bias: bool):

nn.Module.__init__(self)

self.observation_name = list(obs_shapes.keys())[0]

self.l0 = nn.Linear(4, hidden_layer_0, bias=use_bias)
self.l1 = nn.Linear(hidden_layer_0, hidden_layer_1, bias=use_bias)
self.l2 = nn.Linear(hidden_layer_1, 1, bias=use_bias)

def reset_parameters(self) -> None:
"""Reset the parameters of the Model"""

self.l0.reset_parameters()
self.l1.reset_parameters()
self.l1.reset_parameters()

def forward(self, in_tensor_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.
→˓Tensor]:

"""Compute forward pass through the network.

:param in_tensor_dict: Input tensor dict.
:return: The computed output of the network.
"""
Retrieve the observation tensor from the input dict
xx_tensor = in_tensor_dict[self.observation_name]

Compute the forward pass thorough the network
xx_tensor = F.relu(self.l0(xx_tensor))
xx_tensor = F.relu(self.l1(xx_tensor))
xx_tensor = self.l2(xx_tensor)

Create the output dictionary with the computed model output
out = dict({'value': xx_tensor})
return out

An example config for the model composer could then look like this:

@package model

specify the custom model composer by reference
type: maze.perception.models.custom_model_composer.CustomModelComposer

Specify distribution mapping
(here we use a default distribution mapping)
distribution_mapper_config: {}

policy:
first specify the policy type
type: maze.perception.models.policies.ProbabilisticPolicyComposer
specify the policy network(s) we would like to use, by reference
networks:
- type: docs.source.policy_and_value_networks.code_snippets.custom_plain_cartpole_

→˓policy_net.CustomPlainCartpolePolicyNet
specify the parameters of our model
hidden_layer_0: 16
hidden_layer_1: 32

(continues on next page)

254 Chapter 3. Documentation Overview

Maze

(continued from previous page)

use_bias: True

critic:
first specify the critic type (here a state value critic)
type: maze.perception.models.critics.StateCriticComposer
specify the critic network(s) we would like to use, by reference
networks:
- type: docs.source.policy_and_value_networks.code_snippets.custom_plain_cartpole_

→˓critic_net.CustomPlainCartpoleCriticNet
specify the parameters of our model
hidden_layer_0: 16
hidden_layer_1: 32
use_bias: True

Note: Since we do not use the inference block in this example, no visual representation of the model can be rendered.

3.8.6 Where to Go Next

• You can read up on our general introduction to the Perception Module.

• We explain how to use the template model builder in case the you just want to get started with training.

3.9 Maze Trainers

Trainers are the central components of the Maze framework when it comes to optimizing policies using different RL
algorithms. To be more specific, Trainers and TrainingRunners are responsible for the following tasks:

• manage the model types (actor networks, state-critics, state-action-critic, . . .),

• manage agent environment interaction and trajectory data generation,

• compute the loss (specific to the algorithm used),

• update the weights in order to decrease the loss and increase the performance,

• collect and log training statistics,

• manage model checkpoints and the training process (e.g., early stopping).

The figure below provides an overview of the currently supported Trainers.

3.9. Maze Trainers 255

Maze

This page gives a general (high-level) overview of the Trainers and corresponding algorithms supported by the Maze
framework. For more details especially on the implementation please refer to the API documentation on Trainers.
For more details on the training workflow and how to start trainings using the Hydra config system please refer to the
training section.

Overview

• Supported Spaces

• Advantage Actor-Critic (A2C)

• Proximal Policy Optimization (PPO)

• Importance Weighted Actor-Learner Architecture (IMPALA)

• Behavioural Cloning (BC)

• Evolutionary Strategies (ES)

• Maze RLlib Trainer

• Where to Go Next

3.9.1 Supported Spaces

If not stated otherwise, Maze Trainers support dictionary spaces for both observations and actions.

If the environment you are working with does not yet interact via dictionary spaces simply wrap it with the built-in
DictActionWrapper for actions and DictObservationWrapper for observations. In case of standard Gym
environments just use the GymMazeEnv .

256 Chapter 3. Documentation Overview

Maze

3.9.2 Advantage Actor-Critic (A2C)

A2C is a synchronous version of the originally proposed Asynchronous Advantage Actor-Critic (A3C). As a policy
gradient method it maintains a probabilistic policy, computing action selection probabilities, as well as a critic, pre-
dicting the state value function. By setting the number of rollout steps as well as the number of parallel environments
one can control the batch size used for updating the policy and value function in each iteration.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016, June).
Asynchronous methods for deep reinforcement learning. In International conference on machine learning (pp. 1928-
1937).

Example

maze-run -cn conf_train env.name=CartPole-v0 algorithm=a2c model=vector_obs
→˓critic=default_state

Algorithm Parameters | A2CAlgorithmConfig

@package algorithm

number of epochs to train
n_epochs: 0

number of updates per epoch
epoch_length: 25

run evaluation in deterministic mode (argmax-policy)
deterministic_eval: false

number of evaluation trials
eval_repeats: 2

number of steps used for early stopping
patience: 15

number of critic (value function) burn in epochs
critic_burn_in_epochs: 0

Number of steps taken for each rollout
n_rollout_steps: 100

learning rate
lr: 0.0005

discounting factor
gamma: 0.98

bias vs variance trade of factor for Generalized Advantage Estimator (GAE)
gae_lambda: 1.0

weight of policy loss
policy_loss_coef: 1.0

weight of value loss
value_loss_coef: 0.5

weight of entropy loss
entropy_coef: 0.00025

(continues on next page)

3.9. Maze Trainers 257

http://proceedings.mlr.press/v48/mniha16.html

Maze

(continued from previous page)

The maximum allowed gradient norm during training
max_grad_norm: 0.0

Either "cpu" or "cuda"
device: cpu

Runner Parameters | ACRunner

@package runner
type: "maze.train.trainers.common.actor_critic.actor_critic_runners.ACDevRunner"

model class used for policy and critic updates
trainer_class: maze.train.trainers.a2c.a2c_trainer.MultiStepA2C

Number of concurrently executed environments
concurrency: 2

Path to initial state (can contain: policy weights, critic weights, optimizer state)
initial_state_dict: ~

@package runner
type: "maze.train.trainers.common.actor_critic.actor_critic_runners.ACLocalRunner"

model class used for policy and critic updates
trainer_class: maze.train.trainers.a2c.a2c_trainer.MultiStepA2C

Number of concurrently executed environments
concurrency: 8

Path to initial state (can contain: policy weights, critic weights, optimizer state)
initial_state_dict: ~

3.9.3 Proximal Policy Optimization (PPO)

The PPO algorithm belongs to the class of actor-critic style policy gradient methods. It optimizes a “surrogate”
objective function adopted from trust region methods. As such, it alternates between generating trajectory data via
agent rollouts from the environment and optimizing the objective function by means of a stochastic mini-batch gradient
ascent.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Example

maze-run -cn conf_train env.name=CartPole-v0 algorithm=ppo model=vector_obs
→˓critic=default_state

Algorithm Parameters | PPOAlgorithmConfig

@package algorithm

number of epochs to train
n_epochs: 0

(continues on next page)

258 Chapter 3. Documentation Overview

https://arxiv.org/abs/1707.06347

Maze

(continued from previous page)

number of updates per epoch
epoch_length: 25

run evaluation in deterministic mode (argmax-policy)
deterministic_eval: false

number of evaluation trials
eval_repeats: 2

number of steps used for early stopping
patience: 15

number of critic (value function) burn in epochs
critic_burn_in_epochs: 0

Number of steps taken for each rollout
n_rollout_steps: 100

learning rate
lr: 0.00025

discounting factor
gamma: 0.98

bias vs variance trade of factor for Generalized Advantage Estimator (GAE)
gae_lambda: 1.0

weight of policy loss
policy_loss_coef: 1.0

weight of value loss
value_loss_coef: 0.5

weight of entropy loss
entropy_coef: 0.00025

The maximum allowed gradient norm during training
max_grad_norm: 0.0

Either "cpu" or "cuda"
device: cpu

The batch size used for policy and value updates
batch_size: 100

Number of epochs for for policy and value optimization
n_optimization_epochs: 4

Clipping parameter of surrogate loss
clip_range: 0.2

Runner Parameters | ACRunner

@package runner
type: "maze.train.trainers.common.actor_critic.actor_critic_runners.ACDevRunner"

model class used for policy and critic updates
(continues on next page)

3.9. Maze Trainers 259

Maze

(continued from previous page)

trainer_class: maze.train.trainers.ppo.ppo_trainer.MultiStepPPO

Number of concurrently executed environments
concurrency: 8

Path to initial state (can contain: policy weights, critic weights, optimizer state)
initial_state_dict: ~

@package runner
type: "maze.train.trainers.common.actor_critic.actor_critic_runners.ACLocalRunner"

model class used for policy and critic updates
trainer_class: maze.train.trainers.ppo.ppo_trainer.MultiStepPPO

Number of concurrently executed environments
concurrency: 8

Path to initial state (can contain: policy weights, critic weights, optimizer state)
initial_state_dict: ~

3.9.4 Importance Weighted Actor-Learner Architecture (IMPALA)

IMPALA is a RL algorithm able to scale to a very large number of machines. Multiple workers collect trajectories
(sequences of states, actions and rewards), which are communicated to a learner responsible for updating the policy
by utilizing stochastic mini-batch gradient decent and the proposed V-trace correction algorithm. By decoupling roll-
outs (interactions with the environment) and policy updates the algorithm is considered off-policy and asynchronous,
making it very suitable for compute-intense environments.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., Legg, S., & Kavukcuoglu, K. (2018). Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. arXiv preprint arXiv:1802.01561.

Example

maze-run -cn conf_train env.name=CartPole-v0 algorithm=impala model=vector_obs
→˓critic=default_state

Algorithm Parameters | ImpalaAlgorithmConfig

@package algorithm

number of epochs to train
n_epochs: 0

number of updates per epoch
epoch_length: 25

run evaluation in deterministic mode (argmax-policy)
deterministic_eval: false

number of evaluation trials
eval_repeats: 2

number of evaluation envs
eval_concurrency: 2

(continues on next page)

260 Chapter 3. Documentation Overview

https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1802.01561

Maze

(continued from previous page)

number of steps used for early stopping
patience: 15

this factor multiplied by the actor_batch_size gives the size of the queue for
the agents output collected by the learner. Therefor if the all rollouts computed
→˓can be at most
(queue_out_of_sync_factor + num_agents/actor_batch_size) out of sync with learner
→˓policy
queue_out_of_sync_factor: 1

number of rolloutstep of each epoch substep
n_rollout_steps: 100

number of actors to combine to one batch
actors_batch_size: 8

number of actors to be run
num_actors: 8

learning rate
lr: 0.0002

discount factor
gamma: 0.98

coefficient of the policy used in the loss calculation
policy_loss_coef: 1.0

coefficient of the value used in the loss calculation
value_loss_coef: 0.5

coefficient of the entropy used in the loss calculation
entropy_coef: 0.00025

max grad norm for gradient clipping, ignored if value==0
max_grad_norm: 0

A scalar float32 tensor with the clipping threshold for importance weights
(rho) when calculating the baseline targets (vs). rho^bar in the paper. If None, no
→˓clipping is applied.
vtrace_clip_rho_threshold: 1.0

A scalar float32 tensor with the clipping threshold on rho_s in
\rho_s \delta log \pi(a|x) (r + \gamma v_{s+1} - V(x_sfrom_importance_weights)). If
→˓None, no clipping is
applied.
vtrace_clip_pg_rho_threshold: 1.0

the type of reward clipping to be used, options 'abs_one', 'soft_asymmetric', 'None'
reward_clipping: "None"

Device of the learner (either cpu or cuda)
Note that the actors collecting rollouts are always run on CPU.
device: "cpu"

Runner Parameters | ImpalaRunner

3.9. Maze Trainers 261

Maze

@package runner
type: "maze.train.trainers.impala.impala_runners.ImpalaDevRunner"

@package runner
type: "maze.train.trainers.impala.impala_runners.ImpalaLocalRunner"

type of startmethod used for multiprocessing: 'forkserver', 'spawn', 'fork', 'dummy'
start_method: forkserver

3.9.5 Behavioural Cloning (BC)

Behavioural cloning is a simple imitation learning algorithm, that infers the behaviour of a “hidden” policy by imitating
the actions produced for a given observation in a supervised learning setting. As such, it requires a set of training
(example) trajectories collected prior to training.

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2), 1-35.

Example: Imitation Learning and Fine-Tuning

Algorithm Parameters | BCAlgorithmConfig

@package algorithm

Number of epochs to train for
n_epochs: 1000

Number of iterations after which to run evaluation (in addition to evaluations at
→˓the end of
each epoch, which are run automatically). If set to None, evaluations will run on
→˓epoch end only.
eval_every_k_iterations: 500

Number of episodes to run during each evaluation rollout
n_eval_episodes: 10

Optimizer used to update the policy
optimizer:

type: torch.optim.Adam
lr: 0.001

Device to train on
device: cuda

Batch size
batch_size: 100

Number of workers to run evaluation in
n_eval_workers: 4

Percentage of the data used for validation.
validation_percentage: 20

Runner Parameters | ImitationRunner

262 Chapter 3. Documentation Overview

https://dl.acm.org/doi/abs/10.1145/3054912

Maze

@package runner
type: "maze.train.trainers.imitation.ImitationRunner"

Specify the Dataset class used to load the trajectory data for training
dataset:
type: maze.train.trainers.imitation.in_memory_data_set.InMemoryImitationDataSet
trajectory_data_dir: trajectory_data

@package runner
type: "maze.train.trainers.imitation.ImitationRunner"

Specify the Dataset class used to load the trajectory data for training
dataset:
type: maze.train.trainers.imitation.in_memory_data_set.InMemoryImitationDataSet
trajectory_data_dir: trajectory_data

3.9.6 Evolutionary Strategies (ES)

Evolutionary strategies is a black box optimization algorithm that utilizes direct policy search and can be very ef-
ficiently parallelized. Advantages of this methods include being invariant to action frequencies as well as delayed
rewards. Further, it shows tolerance for extremely long time horizons, since it does need to compute or approximate a
temporally discounted value function. However, it is considered less sample efficient then actual RL algorithms.

Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution strategies as a scalable alternative to
reinforcement learning. arXiv preprint arXiv:1703.03864.

Example

maze-run -cn conf_train env.name=CartPole-v0 algorithm=es model=vector_obs

Algorithm Parameters | ESAlgorithmConfig

@package algorithm

Minimum number of episode rollouts per training iteration (=epoch)
n_rollouts_per_update: 10

Minimum number of cumulative env steps per training iteration (=epoch).
The training iteration is only finished, once the given number of episodes
AND the given number of steps has been reached. One of the two parameters
can be set to 0.
n_timesteps_per_update: 0

The number of epochs to train before termination. Pass 0 to train indefinitely
max_epochs: 0

Limit the episode rollouts to a maximum number of steps. Set to 0 to disable this
→˓option.
max_steps: 0

The optimizer to use to update the policy based on the sampled gradient.
optimizer:

type: maze.train.trainers.es.optimizers.adam.Adam
step_size: 0.01

L2 weight regularization coefficient.
(continues on next page)

3.9. Maze Trainers 263

https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864

Maze

(continued from previous page)

l2_penalty: 0.005

The scaling factor of the random noise applied during training.
noise_stddev: 0.02

Runner Parameters | ESMasterRunner

@package runner
type: "maze.train.trainers.es.ESDevRunner"

Fixed number of evaluation runs per epoch.
n_eval_rollouts: 10

Number of float values in the deterministically generated pseudo-random table
shared_noise_table_size: 100000000

3.9.7 Maze RLlib Trainer

Finally, the Maze framework also contains an RLlib trainer class. This special class of trainers wraps all necessary and
convenient Maze components into RLlib compatible objects such that Ray-RLlib can be reused to train Maze policies
and critics. This enables us to train Maze Models with Maze action distributions in Maze environments with almost all
RLlib algorithms.

Example and Details: Maze RLlib Runner

3.9.8 Where to Go Next

• You can read up on our general introduction to the Maze Training Workflow.

• To build and use custom Maze models please refer to Maze Perception Module.

• You can also look up the supported Action Spaces and Distributions Module

3.10 Maze RLlib Runner

The RLlib Runner allows to use RLlib Trainers in combination with Maze models and environments. Ray-RLlib
is one of the most popular RL frameworks (algorithm collections) within the scientific community but also when it
comes to practical relevance. It already comprises an extensive and tuned collection of various different RL training
algorithms. To gain access to RLlib’s algorithm collection while still having access to all of practical Maze features we
introduce the Maze Rllib Module. It basically wraps Maze models (including our extensive Perception Module), Maze
environments (including wrappers) as well as the customizable Maze action distributions. It further allows us to use
the Maze hydra cmd-line interfaces together with RLlib while at the same time using the well optimized algorithms
from RLlib.

This page gives an overview of the RLlib module and provides examples on how to apply it.

264 Chapter 3. Documentation Overview

https://docs.ray.io/en/master/rllib.html
https://docs.ray.io/en/master/rllib.html

Maze

3.10.1 List of Features

• Use Maze environments, models and action distributes in conjunction with RLlib algorithms.

• Make full use of the Maze environment customization utils (wrappers, pre-processing, . . .).

• Use the hydra cmd-line interface to start training runs.

• Models trained with the Maze RLlib Runner are fully compatible with the remaining framework (except when
using the default RLlib models).

3.10.2 Example 1: Training with Maze-RLlib and Hydra

Using RLlib algorithms with Maze and Hydra works analogously to starting training with native Maze Trainers. To
train the CartPole environment with RLlib’s PPO, run:

$ maze-run -cn conf_rllib env.name=CartPole-v0 rllib/algorithm=ppo

Here the -cn conf_rllib argument specifies to use the conf_rllib.yaml (available in maze-rllib) pack-
age, as our root config file. It specifies the way how to use RLlib trainers within Maze. (For more on root configuration
files, see Hydra overview.)

3.10.3 Example 2: Overwriting Training Parameters

Similar to native Maze trainers, the parametrization of RLlib training runs is also done via Hydra. The main parameters
for customizing training and are:

• Environment (env configuration group), configuring which environment the training runs on, this stays the
same as in maze-train for example.

• Algorithm (rllib/algorithm configuration group), specifies the algorithm and its configuration (all sup-
ported algorithms).

• Model (model configuration group), specifying how the models for policies and (optionally) critics should be
assembled, this also stays the same as in maze-train.

• Runner (rllib/runner configuration group), specifies how training is run (e.g. locally, in development
mode). The runner is also the main object responsible for administering the whole training run.. The runner is
also the main object responsible for administering the whole training run.

To train with a different algorithm we simply have to specify the rllib/algorithm parameter:

$ maze-run -cn conf_rllib env.name=CartPole-v0 rllib/algorithm=a3c

Furthermore, we have full access to the algorithm hyper parameters defined by RLlib and can overwrite them. E.g., to
change the learning rate and rollout fragment length, execute

3.10. Maze RLlib Runner 265

Maze

$ maze-run -cn conf_rllib env.name=CartPole-v0 rllib/algorithm=a3c \
algorithm.config.lr=0.001 algorithm.config.rollout_fragment_length=50

3.10.4 Example 3: Training with RLlib’s Default Models

Finally, it is also possible to utilize the RLlib default model builder by specifying model=rllib. This will load the
rllib default model and parameters, which can again be customized via Hydra:

$ maze-run -cn conf_rllib env.name=CartPole-v0 model=rllib \
model.fcnet_hiddens=[128,128] model.vf_share_layers=False

3.10.5 Supported Algorithms

• Advantage Actor-Critic (A2C, A3C)

• Deep Deterministic Policy Gradients (DDPG, TD3)

• Distributed Prioritized Experience Replay (Ape-X)

• Deep Q Networks (DQN, Rainbow, Parametric DQN)

• Importance Weighted Actor-Learner Architecture (IMPALA)

• Model-Agnostic Meta-Learning (MAML)

• Policy Gradients (PG)

• Proximal Policy Optimization (PPO)

• Asynchronous Proximal Policy Optimization (APPO)

3.10.6 The Bigger Picture

The figure below shows an overview of how the RLlib Module connects to the different Maze components in more
detail:

266 Chapter 3. Documentation Overview

https://docs.ray.io/en/latest/rllib-algorithms.html#a2c
https://docs.ray.io/en/latest/rllib-algorithms.html#ddpg
https://docs.ray.io/en/latest/rllib-algorithms.html#apex
https://docs.ray.io/en/latest/rllib-algorithms.html#dqn
https://docs.ray.io/en/latest/rllib-algorithms.html#impala
https://docs.ray.io/en/latest/rllib-algorithms.html#maml
https://docs.ray.io/en/latest/rllib-algorithms.html#pg
https://docs.ray.io/en/latest/rllib-algorithms.html#ppo
https://docs.ray.io/en/latest/rllib-algorithms.html#appo

Maze

3.10.7 Good to Know

Tip: Using the the argument rllib/runner=dev starts ray in local mode, by default sets the number workers to
1 and increases the log level (resulting in more information being printed). This is especially useful for debugging.

Tip: When watching the training progress of RLlib training runs with Tensorboard make sure to start Tensorboard
with --reload_multifile true as both Maze and RLlib will dump an event log.

3.10.8 Where to Go Next

• After training, you might want to rollout the trained policy to further evaluate it or record the actions taken.

• To create a custom Maze environment, you might want to review Maze environment hierarchy and creating a
Maze environment from scratch.

• To build and use custom Maze models please refer to Maze Perception Module.

• For more details on Hydra and how to use it go to configuration with Hydra.

• You can read up on our general introduction to the Maze training workflow.

3.11 Policies, Critics and Agents

Depending on the domain and task we are working on we rely on different trainers (algorithm classes) to appropriately
address the problem at hand. This in turn implies different requirements for the respective models and contained policy
and value estimators.

The figure below provides a conceptual overview of the model classes contained in Maze and relates them to compat-
ible algorithm classes and trainers.

Note that all policy and critics are compatible with Structured Environments.

3.11. Policies, Critics and Agents 267

Maze

3.11.1 Policies (Actors)

An agent holds one or more policies and acts (selects actions) according to these policies. Each policy consists of
one ore more policy networks. This might be for example required in (1) multi-agent RL settings where each agents
acts according to its distinct policy network or (2) when working with auto-regressive action spaces or multi-step
environments.

In case of Policy Gradient Methods, such as the actor-critic learners A2C or PPO, we rely on a probabilistic policy
defining a conditional action selection probability distribution 𝜋(𝑎|𝑠) given the current State 𝑠.

In case of value-based methods, such as DQN, the Q-policy is defined via the state-action value function 𝑄(𝑠, 𝑎) (e.g,
by selecting the action with highest Q value: argmax𝑎𝑄(𝑠, 𝑎)).

3.11.2 Value Functions (Critics)

Maze so far supports two different kinds of critics. A standard state critic represented via a scalar value function 𝑉 (𝑆)
and a state-action critic represented either via a scalar state-action value function 𝑄(𝑆,𝐴) or its vectorized equivalent
𝑄(𝑆) predicting the state-action values for all actions at once.

Analogously to policies each critic holds one or more value networks depending on the current usage scenario we are
in (auto-regressive, multi-step, multi-agent, . . .). The table below provides an overview of the different critics styles.

State Critic 𝑉 (𝑆)
TorchStepStateCritic Each sub-step or actor gets its individual state critic.
TorchSharedStateCritic One state critic is shared across all sub-steps or actors.

State-Action Critic 𝑄(𝑆,𝐴)
TorchStepStateActionCriticEach sub-step or actor gets its individual state-action critic.
TorchSharedStateActionCriticOne state-action critic is shared across all sub-steps or actors.

3.11.3 Actor-Critics

To conveniently work with algorithms such as A2C, PPO, IMPALA or SAC we provide a TorchActorCritic
model to unifying the different policy and critic types into one model.

3.11.4 Where to Go Next

• For further details please see the reference documentation.

• To see how to actually implement policy and critic networks see the Perception Module.

• You can see the list of available probability distributions for probabilistic policies.

• You can also follow up on the available Maze trainers.

268 Chapter 3. Documentation Overview

Maze

3.12 Maze Environment Hierarchy

When working with an environment, it is desirable to maintain some modularity in order to be able to, for example, test
different configurations of action and observation spaces, modify or record rollouts, or turn an existing flat environment
into a structured one.

This page explains how Maze achieves such modularity by breaking down the Maze environment into smaller com-
ponents and utilizing wrappers. It also provides a high-level overview of what you need to do to use a new or existing
custom environment with Maze. (You can find guidance on that at the end of each section.)

For more references on the individual components or on how to write a new environment from scratch, see the Where
to Go Next section at the end.

The following sections describe the main components:

• Core environment, which implements the main environment mechanics, and works with MazeState and Maze-
Action objects.

• Observation- and ActionConversionInterfaces which turn MazeState and MazeAction objects (custom to the
core environment) into actions and observations (instances of Gym-compatible spaces which can be fed into a
model).

• Maze env, which encapsulates the core environment and implements functionality common to all environments
above it (e.g. manages observation and action conversion).

• Wrappers, which add a great degree of flexibility by allowing you to encapsulate the environment and observe
or modify its behavior.

• Structured environment interface, which Maze uses to model more complex scenarios such as multi-step (auto-
regressive), multi-agent or hierarchical settings.

Here, we explain what parts a Maze environment is composed of and how to apply wrappers.

3.12. Maze Environment Hierarchy 269

Maze

3.12.1 Core Environment

Core environment implements the main mechanics and functionality of the environment. Its interface is compatible
with the Gym environment interface with functions such as step and reset.

The step function of the core environment takes an MazeAction object and returns a MazeState object. There
are no strict requirements on how these objects should look – their structure is dependent on the needs of the core
environment. However, note that these objects should be serializable, so that they can be easily recorded as part of
trajectory data and inspected later.

Besides the Gym interface, core environment interface also contains a couple of hooks that make it easy to support
various features of maze, like recording trajectory of your rollouts and then replaying these in a Jupyter notebook.
These method include, e.g., get_renderer() and get_serializable_components(). You don’t have to
use these if you don’t need them (e.g. just return an empty dictionary to get_serializable_components() if
there are no additional components you would like to serialize with trajectory data) – but then, some features of Maze
might not be available.

If you want to use a new or existing environment with Maze, core environment is where you should start. Implement
the core environment interface in your environment or encapsulate your environment in an core environment subclass.

3.12.2 Gym-Space Interfaces

Observation- and ActionConversionInterfaces translate MazeState and MazeAction objects (custom to the core en-
vironment) into actions and observations (instances of Gym-compatible spaces, i.e., usually a dictionary of numpy
arrays which can be fed into a model) and vice versa.

It makes sense to extract this functionality in a separate objects, as format of actions and observations often needs
to be swapped (to allow for different trained policies or heuristics). Treating space interfaces as separate objects
encapsulates their configuration and separates it from the core environment functionality (which does not need to be
changed when only, e.g., the format of the action space is being changed).

If you are creating a new Maze environment, you will need to implement at least one pair of interfaces – one for
conversion of MazeStates into observations that your models can later consume, and other one for converting the
actions produced by the model to the MazeActions your environment works with.

For more information on the space interfaces and how to customize your environment with them, refer to Customizing
Core and Maze Environments.

3.12.3 Maze Environment

Maze environment encapsulates the core environment together with the space interfaces. Here, the functionality
shared across all core environments is implemented – like management of the space interfaces, support for statistics
and logging, and else.

Maze environment is the smallest unit that an RL agent can interact with, as it encapsulates the core functionality
implemented by the core environment, space interfaces that translate the MazeState and MazeAction so that the model
can understand it, and support for other optional features of Maze that you can add (like statistics logging).

If you are creating a new environment, you will likely not need to think of the Maze environment class much, as it is
mostly concerned with functionalities shared across all Maze environments. You will still need to subclass it to have
a distinct Maze environment class for your environment, but usually it is enough to override the initializer, there is no
need to modify any of its other functionalities.

270 Chapter 3. Documentation Overview

Maze

3.12.4 Wrappers

(This section provides an overview. See also Wrappers for more details.)

Wrappers are a very flexible way how to modify behavior of an environment. As the name implies, a wrapper en-
capsulates the whole environment in it. This means that the wrapper has complete control over the behavior of the
environment and can modify it as suited.

Note also that another wrapper can also be applied to an already wrapped environment. In this case, each method call
(such as step) will traverse through the whole wrapper stack, from the outer-most wrapper to the Maze env, with
each wrapper being able to intercept and modify the call.

Maze provides superclasses for commonly used wrapper types:

• ObservationWrapper can manipulate the observation before it reaches the agent. Observation wrappers are
used for example for observation normalization wrapper or masking. Usually, this is the most common type of
wrapper used.

• RewardWrapper can manipulate the reward before it reaches the model.

• ActionWrapper can manipulate the action the model produced before it is converted using ActionConversion-
Interface in Maze environment.

• Wrapper is the common superclass of all the wrappers listed above. It can be subclassed directly if you need
to provide some more elaborate functionality, like turning your flat environment into a structured multi-step one

If you are creating a new Maze environment, wrappers are optional. Unless you have some very special needs, the
wide variety of wrappers provided by Maze (like observation normalization wrapper or trajectory recording wrapper)
should work with any Maze environment out of the box. However, you might need to implement a custom wrapper
if you want to modify the behavior of your environment in some more customized manner, like turning your flat
environment into a structured multi-step one.

For more information on wrappers and customization, see Wrappers.

3.12.5 Structured Environments

Loop uses the StructuredEnv concept to model more complex settings, such as multi-step (auto-regressive),
multi-agent or hierarchical settings.

While such settings can indeed be quite complex, the StructuredEnv interface itself is rather simple under the
hood. In summary, during each step in the environment:

1. The agent needs to ask which policy should act next. The environment exposes this using the actor_id
method.

2. The agent then should evaluate the observation using the policy corresponding to the current actor ID, and issue
the desired action using the step function in a usual Gym-like manner.

Note that the Actor ID, which identifies the currently active policy, is composed of (1) the sub-step key and (2) the
index of the current actor in scope of this sub-step (as in some settings, there might be multiple actors per sub-step
key).

Maze uses the StructuredEnv interface in all settings by default, and other Maze components like TorchPolicy
support it (and make it convenient to work with) out of the box.

3.12. Maze Environment Hierarchy 271

Maze

3.12.6 Where to Go Next

After understanding how Maze environment hierarchy works, you might want to:

• See how Hydra configuration works and how environments can be customized through it

• See more about how to customize an existing environment with wrappers

• Get more information on how to write a new Maze environment from scratch

• See how Maze environments dispatch events to facilitate statistics collection and other forms of logging

• Understand how policies and agents are structured

Also, note that the classes described above (like Core environment and Maze environment) themselves implement a set
of interfaces that facilitate some of Maze functions, like EventEnvMixin interfacing the Event system or RenderEn-
vMixin facilitating rendering. You will likely not need to work with these directly, and hence they are not described
here in detail. However, if you need to know more about these, head to the reference documentation.

3.13 Maze Event System

The Maze event system is a convenient way how to monitor notable events happening in the environment as the agent
is interacting with it. This page explains the motivation behind it, gives an overview of how it is used in Maze (pointing
to other relevant sections), and briefly explains how it works under the hood.

3.13.1 Motivation

Standard metrics such as reward and step count provide a high-level overview of how an agent is doing in an environ-
ment, but don’t provide more detailed information on the actual behavior.

On the other hand, visualizing or otherwise inspecting the full environment state gives very detailed information on
the behavior in some particular time frame, but is difficult to compare and aggregate across episodes or training runs.

In Maze, event system fills the space between – providing more information about environment mechanics than just
watching the reward, while making it easy to log, understand, and compare it across episodes and rollouts.

3.13.2 What is an event?

As the name suggests, an event is something notable that happens during the agent-environment interaction loop. For
example, when the inventory is full in the example 2D cutting env, a piece will be discarded and the corresponding
event will be fired:

self.inventory_events.piece_discarded(piece=(50, 30))

As can be seen above, events carry a descriptive name, encapsulate the details (like the dimensions of the discarded
piece), and are part of a topic (like “inventory events”).

While there are some general events that apply to all environments (like reward-related events or KPIs), in general,
environments declare their own topics and events as they see fit.

To understand how to declare and integrate custom events into your environment, see the adding events and KPIs
tutorial.

272 Chapter 3. Documentation Overview

Maze

3.13.3 How are events used in Maze?

There are three main things events are used for throughout Maze:

1. Reward aggregation. Reward aggregators declare which events they desire to observe, and then calculate the
reward on top of them. This makes it possible to keep reward aggregators decoupled from the environment,
which means they can be configured and changed easily. (Check out reward aggregation and the tutorial for
more information.)

2. Statistics and KPIs. Event declarations can be annotated using decorators which specify how they should be
aggregated on different levels (i.e., step, episode, and epoch). The statistics system then aggregates the events
into statistics during trainings and rollouts, and displays these statistics in Tensorboard and console. This makes
it possible to understand the agent’s behavior much better than if only high-level statistics such as reward and
step count were observed. (For more information, see how statistics are logged and calculated.)

3. Raw event data logging. Events and their details are logged in CSV format, which makes them easy to access
and analyze later via any custom tools. (While the CSV format should be suitable for most data-analysis tools
out there, it is also possible to extend the logging functionality via custom writers if needed.)

For any other custom needs, it is possible to plug into the event system directly through the Pubsub or
EventEnvMixin interfaces.

3.13.4 PubSub: Dispatching and Observing Events

Each core environment maintains its own Pubsub message broker (stands for publisher-subscriber). Using the broker,
it is possible to register event topics (created as described in the tutorial), register subscribers (which will then collect
the dispatched events), and dispatch events themselves.

In a core env (which maintains a pubsub broker)

Create a topic
inventory_events = self.pubsub.create_event_topic(InventoryEvents)

Register a subscriber (can be a reward aggregator
or any other class implementing the Subscriber interface)
self.pubsub.register_subscriber(my_subscriber)

Dispatch an event
inventory_events.piece_discarded(piece=(50, 10))

Note that the subscriber must implement the Subscriber interface and declare which events it want to be notified
about. This pattern is used by RewardAggregators, and the tutorial on adding reward aggregation is also a good
place to start for any other custom needs.

3.13.5 EventEnvMixin Interface: Querying Events

Core environment also records all events dispatched during the last time step and makes them accessible using the
EventEnvMixin interface. If you only need to query events dispatched during the last timestep, this option might
be more lightweight than registering with the Pubsub message broker.

env.get_step_events()

To see the interface in action, you might want to check out the LogStatsWrapper, which uses this interface to
query events for aggregation.

3.13. Maze Event System 273

Maze

3.13.6 Where to Go Next

After understanding the main concepts of the event system, you might want to:

• See how reward aggregation works and how to implement it in an environment from scratch

• Check out the statistics logging in Tensorboard and console

• Review how the events and KPI aggregation works

3.14 Configuration with Hydra

Here, we explain the configuration scheme of the Maze framework, which explain how to configure your environment
and other components using YAML files, run your experiments via CLI, and customize the runs via CLI overrides.

The Maze framework utilizes the Hydra configuration framework. These pages aim to give you a quick overview of
how Maze uses Hydra and what its capabilities are, so that you can get up to speed configuring Maze quickly without
much prior Hydra knowledge. It also points to relevant parts of Hydra docs if you would like to go deeper.

3.14.1 Hydra: Overview

The motivation behind using Hydra is primarily to:

• Keep separate components (e.g., environment, policy) in individual YAML files which are easier to understand

• Run multiple experiments with different components (like using two different environment configurations, or
training with PPO vs. A2C) without duplicating the whole config file

• Make components/values different from the defaults immediately visible (with, e.g., maze-run
runner=sequential)

Below, the core concepts of Hydra as Maze uses it are described:

• Introduction explains the core concepts of assembling configuration with Hydra

• Config Root & Defaults explains how the root config file works and how default components are specified

• Overrides show how you can easily customize the config parameters without duplicating the config file, and
have Hydra assemble the config and log it for you

• Output Directory shows how Hydra creates separate directories for your runs automatically. It is a bit separated
from the previous concepts but still important for running your jobs.

• Runner concept section explains how the Hydra config is handled by Maze to launch various kinds of jobs (like
rollout or train runs) with different configurations

Introduction

Hydra is a configuration framework that, in short, allows you to:

1. Break down your configuration into multiple smaller YAML files (representing individual components)

2. Launch your job through CLI providing overrides for individual components or values and have Hydra assemble
the config for you

Ad (1): For illustrative purposes, this is an example of how your Hydra config structure can look like:

274 Chapter 3. Documentation Overview

https://hydra.cc/

Maze

Ad (2): With the structure above, you could then launch your jobs with specified components (again, this is only for
illustrative purposes):

$ maze-run runner=parallel

Or, you can even override any individual value anywhere in the config like this:

$ maze-run runner=parallel runner.n_processes=10

You can also review the basic example and composition example at Hydra docs.

3.14. Configuration with Hydra 275

https://hydra.cc/docs/next/intro#basic-example
https://hydra.cc/docs/next/intro#composition-example

Maze

Configuration Root, Groups and Defaults

The starting place for a Hydra config is the root configuration file. It lists (1) the individual configuration groups
that you would like to use along with their defaults, and (2) any other configuration that is universal. A simple root
config file might look like this (all of these examples are snippets taken from maze config, shortened for brevity):

These are the individual config components with their defaults
defaults:

- runner: parallel
- env: cartpole
- wrappers: default
optional: true

...

Other values that are universally applicable (still can be changed with overrides)
log_base_dir: outputs

...

The snippet runner: parallel tells Hydra to look for a file runner/parallel.yaml and transplant its
contents under the runner: key. (If optional: true is specified, Hydra does not raise an error when such a
config file cannot be found.)

Hence, if the runner/parallel.yaml file looks like this:

n_processes: 5
n_episodes: 50
...

the final assembled config would look like this:

runner:
n_processes: 5

n_episodes: 50
...

env:
...

Overrides

When running your job through a command line, you can customize individual bits of your configuration via
command-line arguments.

As briefly demonstrated above, you can override individual defaults in the config file. For example, when running a
Maze rollout, the default runner is parallel, but you could specify the sequential runner instead:

$ maze-run runner=sequential

Besides overriding specifying the config components, you can also override individual values in the config:

$ maze-run runner=sequential runner.max_episode_steps=1000

There is also more advanced syntax for adding/removing config keys and other patterns – for this, you can consult
Hydra docs regarding basic overrides and extended override syntax.

276 Chapter 3. Documentation Overview

https://hydra.cc/docs/next/advanced/override_grammar/basic
https://hydra.cc/docs/next/advanced/override_grammar/extended

Maze

Output Directory

Hydra also by default handles the output directory for each job you run.

By default, outputs is used as the base output directory and a new subdirectory is create inside for each run. Here,
Hydra also logs the configuration for the current job in the .hydra subdirectory, so that you can always get back to
it.

You can override the hydra output directory as follows:

$ maze-run hydra.run.dir=my_dir

More on the output directory setting can be found in Hydra docs: output/working directory and customizing working
directory pattern.

Maze Runner Concept

In Maze, the maze-run command (that you have seen above already) is the single central utility for launching all
sorts of jobs, like training or rollouts.

Under the hood, when you launch such a job, the following happens:

1. Maze checks the runner part of the Hydra configuration that was passed through the command. And instanti-
ates a runner object from it (subclass of Runner).

(The runner component of the configuration always specifies the Runner class to be instantiated, along with
any other arguments it needs at initialization.)

2. Maze then calls the run method on the instantiated runner and passes it the whole config, as obtained from
Hydra.

This enables the maze-run command to keep a lot of variability without much coupling of the individual function-
alities. For example, rollouts are run through subclasses of RolloutRunner and trainings through subclasses of
TrainingRunner.

You are also free to create your own subclasses for rollouts, trainings or any completely different use cases.

Where to Go Next

After understanding the basics of how Maze uses Hydra, you might want to:

• Try running a rollout using Hydra configuration through command line to put these ideas into action

• Create custom Hydra configuration files for your project

• Understand the advanced concepts of Hydra

3.14.2 Hydra: Your Own Configuration Files

We encourage you to add custom config files in your own project. These will make it easy for you to launch different
versions of your environments and agents with different parameters.

To be able to use custom configuration files, you first need to create your config module and add it to the Hydra search
path. Then, you can either create just your own config modules (e.g., when you just need to customize the environment
config), or create your own root config file if you have more custom needs.

3.14. Configuration with Hydra 277

https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory

Maze

Step 1: Custom Config Module in Hydra Search Path

For this, first, create a module where your config will reside (let’s say your_project.conf) and place an
__init__.py file in there.

Then, add this config module to the Hydra search path by creating the following Hydra plugin (substitute
your_project.conf with your actual config module path):

Inside your project in: hydra_plugins/add_custom_config_to_search_path.py

"""Hydra plugin to register additional config packages in the search path."""
from hydra.core.config_search_path import ConfigSearchPath
from hydra.plugins.search_path_plugin import SearchPathPlugin

class AddCustomConfigToSearchPathPlugin(SearchPathPlugin):
"""Hydra plugin to register additional config packages in the search path."""

def manipulate_search_path(self, search_path: ConfigSearchPath) -> None:
"""Add custom config to search path (part of SearchPathPlugin interface)."""
search_path.append("project", "pkg://your_project.conf")

Now, you can add additional root config files as well as individual components into your config package.

For more information on search path customization, check Config Search Path and SearchPathPlugins in Hydra docs.

Step 2a: Custom Config Components

If what you are after is only providing custom options for some of the components Maze configuration uses (e.g., a
custom environment configuration), then it suffices to add these into the relevant directory in your config module and
you are good to go.

For example, if you want a custom configuration for the Gym Car Racing env, you might do:

In your_project/conf/env/car_racing.yaml:

@package env
type: maze.core.wrappers.maze_gym_env_wrapper.GymMazeEnv
env: "CarRacing-v0"

Then, you might call maze-run with the env=car_racing override and it will load the configuration from your
file.

Depending on your needs, you can mix-and-match your custom configurations with configurations provided by Maze
(e.g. use a custom env configuration while using a wrappers or models configuration provided by Maze).

Step 2b: Custom Root Config

If you need more customization, you will likely need to define your own root config. This is usually useful for custom
projects, as it allows you to create custom defaults for the individual config groups.

We suggest you start by copying one of the root configs already available in Maze (like conf_rollout or
conf_train, depending on what you need), and then adding more required keys or removing those that are not
needed. However, it is also not difficult to start from scratch if you know what you need.

Once you create your root config file (let’s say your_project/conf/my_own_conf.yaml), it suffices to point
Hydra to it via the argument -cn my_own_conf, so your command would look like this (for illustrative purposes):

278 Chapter 3. Documentation Overview

https://hydra.cc/docs/next/advanced/search_path
https://hydra.cc/docs/next/advanced/plugins#searchpathplugin

Maze

$ maze-run -cn my_own_conf

Then, all the defaults and available components that Hydra will look for depend on what you specified in your new
root config.

For an overview of root config, check out config root & defaults.

Step 3: Custom Runners (Optional)

If you want to launch different types of jobs than what Maze provides by default, like implementing a custom training
algorithm or deployment scenario that you would like to run via the CLI, you will benefit from creating a custom
Runner.

You can subclass the desired class in the runner hierarchy (like the TrainingRunner if you are implementing a
new training scheme, or the general Runner for some more general concept). Then, just create a custom config file
for the runner config group that configures your new class, and you are good to go.

Where to Go Next

After understanding how custom configuration is done, you might want to:

• Review the Hydra overview to see how you should structure your custom configuration

• Read about the advanced concepts of Hydra

3.14.3 Hydra: Advanced Concepts

This page features a collection of more advanced Hydra features which are used throughout the framework.

Interpolation

Hydra is based on OmegaConf and supports interpolation.

Interpolation allows us to reference and reuse a value defined elsewhere in the configuration, without repeating it. For
example:

original:
value: 1 # We want to reference this value elsewhere

some:
other:
structure: ${original.value} # Reference

A (somewhat limited) form of interpolation is used also in specializations described below.

3.14. Configuration with Hydra 279

https://github.com/omry/omegaconf

Maze

Specializations

Specializations are parts of config that depend on multiple components. For example, your wrapper configuration
might depend on both the environment chosen (e.g., gym_pixel_env or gym_feature_env) and your model
(e.g., default or rnn) – if using an RNN, you might want to include ObservationStackWrapper, but its configuration
also depends on the environment used.

Then, specializations come to the rescue. In your root config file, you can include a specialization like this (for
illustrative purposes):

defaults:
- env: gym_pixel_env
- model: default
- env_model: ${defaults.1.env}-${defaults.2.model}
optional: true

Then, when you run this configuration with env=gym_pixel_env and model=rnn, Hydra will look into the
env_model directory for configuration named gym_pixel_env-rnn.yaml. This allows you to capture the
dependencies between these two components easily without having to specify more overrides.

Specializations are well explained in Hydra docs here.

Where to Go Next

After understanding advanced Hydra configuration, you might want to:

• Create custom Hydra configuration files for your project

• Review the root configurations available in the Maze framework (as they are a good basis for your custom
configurations)

3.15 Environment Rendering

In cases when reviewing the statistics and event logs provided by the event system does not provide enough insight,
rendering the environment state in a particular time step is helpful.

Maze supports two rendering modes:

1. Rendering online during the rollout. This is possible simply using the sequential rollout runner for a roll-
out, and setting the rendering flag to true using the following overrides: runner=sequential runner.
render=true.

2. Rendering offline, in a Jupyter notebook, from trajectory data collected earlier. For environments which
provide a Maze-compatible render, rollouts can be rendered and browsed retroactively. Review collecting and
visualizing rollouts for more details. (Unfortunately, this mode is not yet supported for ordinary Gym envs –
unless a custom Maze-compatible renderer is provided.)

280 Chapter 3. Documentation Overview

https://hydra.cc/docs/next/patterns/specializing_config

Maze

3.16 Customizing Core and Maze Envs

Whenever simulations reach a certain level of complexity or (ideally) already exist, but have been developed for other
purposes than the RL scenario, the Gym-style environment interfaces might not be sufficient anymore to meet all
technical requirements (e.g., the state is too complex to be represented as a simple Gym-style numpy array). In case
of existing simulations it probably was not even taken into account at all and we have to deal with simulation specific
interfaces and objects.

To cope with such situations Maze introduces a few additional concepts which are summarized in the figure below.
Before we continue with some practical examples emphasizing why this structure is useful for environment customiza-
tion and convenient experimentation, we first describe the concepts and components in a bit more detail. You can also
find these components in the reference documentation.

Observation- and ActionConversionInterfaces:

Maze introduces MazeStates and MazeActions, extending Observations and Actions (represented as numerical ar-
rays) to simulation specific generic objects. This grants more freedom in choosing appropriate environment-specific
representations to separate the data model from the numerical representation, which in turn greatly simplifies the
development and readability of environment and engineered baseline agent implementations.

• Action: the Gym-style, machine readable action.

• MazeAction: the simulation specific representation of the action (e.g., an arbitrary Python object).

• ActionConversionInterface: maps agent actions to environment (simulation) specific MazeActions and defines
the respective Gym action space.

• Observation: the Gym-style, machine readable observation (e.g., a numpy array).

• MazeState: the simulation specific representation of the observation (e.g. an arbitrary Python object).

• ObservationConversionInterface: maps simulation MazeStates to Gym-style observations and defines the
respective Gym observation space.

Core and Maze Environments:

The same distinction is carried out for environments.

• CoreEnv: this is the central environment, which could be also seen as the simulation, forming the basis for
actual, RL trainable environments. CoreEnvs accept MazeAction objects as input and yield MazeState objects
as response.

3.16. Customizing Core and Maze Envs 281

https://gym.openai.com/docs/#environments/

Maze

• CoreEnv Config: configuration parameters for the CoreEnvironment (the simulation).

• MazeEnv: wraps the CoreEnvs as a Gym-style environment in a reusable form, by utilizing the interfaces
(mappings) from the MazeState to the observations space and from the MazeAction to the action space.

3.16.1 List of Features

Introducing the concepts outlined above allows the following:

• Implement and maintain observations and actions as arbitrarily complex, simulation specific objects (MazeStates
and MazeActions). In many cases sticking to Gym spaces gets quite cumbersome and makes the development
processes unnecessarily complex.

• Easily experiment with different observation and action spaces simply by switching the Observation- and Ac-
tionConversionInterface.

• Train agents based on existing 3rd party simulations (environments) by implementing the Observation- and
ActionConversionInterfaces (of course this also requires to have a Python API available).

• Easy configuration of the CoreEnv (simulation).

3.16.2 Example: Core- and MazeEnv Configuration

The config snippet below shows an example environment configuration for the built-in cutting-2d environment.

@package env
type: maze_envs.logistics.cutting_2d.env.maze_env.Cutting2DEnvironment

parametrizes the core environment (simulation)
core_env:

max_pieces_in_inventory: 1000
raw_piece_size: [100, 100]
demand_generator:
type: mixed_periodic
n_raw_pieces: 3
m_demanded_pieces: 10
rotate: True

defines how rewards are computed
reward_aggregator:
type: maze_envs.logistics.cutting_2d.reward.default.DefaultRewardAggregator

defines the conversion of actions to executions
action_conversion

- type: maze_envs.logistics.cutting_2d.space_interfaces.action_conversion.dict.
→˓ActionConversion

max_pieces_in_inventory: 1000

defines the conversion of states to observations
observation_conversion:

- type: maze_envs.logistics.cutting_2d.space_interfaces.observation_conversion.dict.
→˓ObservationConversion

max_pieces_in_inventory: 1000
raw_piece_size: [100, 100]

The config defines:

• which MazeEnv to use,

282 Chapter 3. Documentation Overview

Maze

• the parametrization of the CoreEnv including reward computation,

• how MazeStates are converted to observations and

• how actions are converted to MazeActions.

All components together compose a concrete RL problem instance as a trainable environment. In particular, whenever
you would like to experiment with specific aspects of your RL problem (e.g. tweak the observation space) you only
have to exchange the respective part of your environment configuration.

Note: As showing concrete implementations of a CoreEnv or the Observation- and ActionConversionInterfaces is
beyond the scope of this page we refer to the Maze - step by step tutorial for details.

3.16.3 Where to Go Next

• You might want to get a bigger picture of the Maze environment hierarchy.

• Learn how to customize with environment wrappers.

• Learn about reward customization and shaping.

• See the special wrappers for observation pre-processing and observation normalization.

3.17 Customizing / Shaping Rewards

In a reinforcement learning problem the overall goal is defined via an appropriate reward signal. In particular, reward
is attributed to certain, problem specific key events. During the training process the agent then has to discover a policy
(behaviour) that maximizes the cumulative future reward over time. In case of a meaningful reward signal such a
policy will be able to successfully address the decision problem at hand.

From a technical perspective, reward customization in Maze is based on the general event system (which also serves
other purposes) and is implemented via RewardAggregators. In summary, after each step, the reward aggregator
gets access to all the events the environment dispatched during the step (e.g., a new item was replenished to inventory),
and can then calculate arbitrary rewards based on these events. This means it is possible to modify and shape the reward
signal based on different events and their characteristics by plugging in different reward aggregators without further
modifying the environment.

Below we show how to get started with reward customization by configuring the CoreEnv and by implementing a
custom reward.

3.17. Customizing / Shaping Rewards 283

Maze

3.17.1 List of Features

Maze event-based reward computation allows the following:

• Easy experimentation with different reward signals.

• Implementation of custom rewards without the need to modify the original environment (simulation).

• Computing rewards based on multiple components of the environment as well as global events.

• Combining multiple different objectives into one multi-objective reward signal.

• Computation of multiple rewards in the same env, each based on a different set of components (multi agent).

3.17.2 Configuring the CoreEnv

The following config snippet shows how to specify reward computation for a CoreEnv via the field
reward_aggregator. You only have to set the reference path of the RewardAggregator and reward computa-
tion will be carried out accordingly in all experiments based on this config.

For further details on the remaining entries of this config you can read up on how to customize Core- and MazeEnvs.

@package env
type: maze_envs.logistics.cutting_2d.env.maze_env.Cutting2DEnvironment

parametrizes the core environment (simulation)
core_env:

max_pieces_in_inventory: 1000
raw_piece_size: [100, 100]
demand_generator:
type: mixed_periodic
n_raw_pieces: 3
m_demanded_pieces: 10
rotate: True

defines how rewards are computed
reward_aggregator:
type: maze_envs.logistics.cutting_2d.reward.default.DefaultRewardAggregator

defines the conversion of actions to executions
action_conversion

- type: maze_envs.logistics.cutting_2d.space_interfaces.action_conversion.dict.
→˓ActionConversion

max_pieces_in_inventory: 1000

defines the conversion of states to observations
observation_conversion:

- type: maze_envs.logistics.cutting_2d.space_interfaces.observation_conversion.dict.
→˓ObservationConversion

max_pieces_in_inventory: 1000
raw_piece_size: [100, 100]

284 Chapter 3. Documentation Overview

Maze

3.17.3 Implementing a Custom Reward

This section contains a concrete implementation of a reward aggregator for the built-in cutting environment.

In summary, the reward aggregator first declares which events it is interested in (the get_interfaces method). At the
end of the step, after all the events have been accumulated, the reward aggregator is asked to calculate the reward (the
summarize_reward method). This is the core of the reward computation – you can see how the events are queried and
the reward assembled based on their values.

"""Assigns negative reward for relying on raw pieces for delivering an order."""
from typing import List

from maze.core.annotations import override
from maze.core.events.pubsub import Subscriber
from maze_envs.logistics.cutting_2d.env.events import InventoryEvents
from maze.core.env.reward import RewardAggregatorInterface

class RawPieceUsageRewardAggregator(RewardAggregatorInterface):
"""
Reward scheme for the 2D cutting env penalizing raw piece usage.

:param reward_scale: Reward scaling factor.
"""
def __init__(self, reward_scale: float):

super().__init__()
self.reward_scale = reward_scale

@override(Subscriber)
def get_interfaces(self) -> List:

"""Specification of the event interfaces this subscriber wants to receive
→˓events from.

Every subscriber must implement this configuration method.

:return: A list of interface classes.
"""
return [InventoryEvents]

def summarize_reward(self) -> float:
"""Summarize reward based on the orders and pieces to cut.

:return: the summarized scalar reward.
"""

iterate replenishment events and assign reward accordingly
reward = 0.0
for _ in self.query_events(InventoryEvents.piece_replenished):

reward -= 1.0

rescale reward with provided factor
reward *= self.reward_scale

return reward

@classmethod
@override(RewardAggregatorInterface)
def to_scalar_reward(cls, reward: float) -> float:

"""Nothing to do here for this env as the reward is already a scalar.

(continues on next page)

3.17. Customizing / Shaping Rewards 285

Maze

(continued from previous page)

This method is useful for example in a multi-agent setting
where we could sum over multiple actors to assign a joint reward.

:param reward: Here already a scalar reward.
:return: The scalar reward returned by the environment.
"""
return reward

When adding a new reward aggregator you (1) have to implement the RewardAggregatorInterface and (2)
make sure that it is accessible within your Python path.

Besides that you only have to provide the reference path of the reward_aggregator to use:

reward_aggregator:
type: my_project.custom_reward.RawPieceUsageRewardAggregator
reward_scale: 0.1

3.17.4 Where to Go Next

• Additional options for customizing environments can be found under the entry “Environment Customization” in
the sidebar.

• For further technical details we highly recommend to read up on the Maze event system.

• To see another application of the event system you can read up on the Maze logging system.

3.18 Environment Wrappers

Environment wrappers are an elegant way to modify and customize environments for RL training and experimentation.
As the name already suggests, they wrap an existing environment and allow to modify different parts of the agent-
environment interaction loop including observations, actions, the reward or any other internals of the environment
itself.

To gain access to the functionality of Maze environment wrappers you simply have to add a wrapper stack in your
hydra configuration. To get started just copy one of our hydra config snippets below or use it directly within Python.

Note: Wrappers have been already introduced in OpenAi’s Gym and elegantly expose methods and attributes of all
nested envs. However, wrapping destroys the class hierarchy, querying the base classes is not straight-forward. Maze

286 Chapter 3. Documentation Overview

https://github.com/openai/gym/tree/master/gym/wrappers/

Maze

environment wrappers fix the behaviour of isinstance() for arbitrarily nested wrappers.

3.18.1 List of Features

Maze environment wrappers allows the following:

• Easy customization of environments: (observations, actions, reward, internals)

• Convenient development of concepts such as observation pre-processing and observation normalization.

• Preserves the class hierarchy of nested environments.

3.18.2 Example 1: Customizing Environments with Wrappers

To make use of Maze environment wrappers just add a config snippet as listed below.

@package wrappers
RandomResetWrapper:

min_skip_steps: 0
max_skip_steps: 100

TimeLimitWrapper:
max_episode_steps: 1000

Details:

• It applies the specified wrappers in the defined order from top to bottom.

• Adds a RandomResetWrapper randomly skipping the first 0 to 100 frames

• Adds a TimeLimitWrapper restricting the maximum temporal horizon of the environment

3.18.3 Example 2: Using Custom Wrappers

In case the built-in wrappers provided with Maze are not sufficient for your use case you can of course implement and
add additional custom wrappers.

@package wrappers
my_project.wrappers.custom_wrapper.CustomObserverWrapper:
parameter_1: 0.5
parameter_2: 1000

When adding a new environment wrappers you (1) have to implement the Wrapper interface and (2) make sure that it
is accessible within your Python path. Besides that you only have to provide the reference path of the wrapper to use,
plus any parameters the wrapper initializer needs.

3.18. Environment Wrappers 287

Maze

3.18.4 Example 3: Plain Python Configuration

If you are not working with the Maze command line interface but still want to use wrappers directly within Python
you can start with the code snippet below.

"""Contains an example showing how to add wrappers."""
from maze.core.wrappers.random_reset_wrapper import RandomResetWrapper
from maze.core.wrappers.time_limit_wrapper import TimeLimitWrapper

instantiate the environment
env = ...

apply wrappers
env = RandomResetWrapper.wrap(env, min_skip_steps=0, max_skip_steps=100)
env = TimeLimitWrapper.wrap(env, max_episode_steps=1000)

3.18.5 Built-in Wrappers

Maze already comes with built-in environment wrappers. You can find a list and further details on the functionality of
the respective wrappers in the reference documentation.

For the following wrappers we also provide a more extensive documentation:

• Observation Pre-Processing

• Observation Normalization

• Observation Logging

3.18.6 Where to Go Next

• For further details please see the reference documentation.

• Special wrapper for observation pre-processing and observation normalization.

• You might also want to read up on the Maze environment hierarchy.

3.19 Observation Pre-Processing

Sometimes it is required to pre-process or modify observations before passing them through our policy or value
networks. This might be for example the conversion of an three channel RGB image to a single channel grayscale
image or the one-hot encoding of a categorical observation such as the current month into a feature vector of length
12. Maze supports observation pre-processing via the PreProcessingWrapper.

288 Chapter 3. Documentation Overview

Maze

This means to gain access to observation pre-processing and to the features listed below you simply have to add the
PreProcessingWrapper to your wrapper stack in your Hydra configuration.

To get started you can also just copy one of our Hydra config snippets or use it directly from Python.

3.19.1 List of Features

Maze observation pre-processing supports:

• Gym dictionary observation spaces

• Individual pre-processors for all sub-observations of these dictionary spaces

• Cascaded pre-processing pipelines for a single observation (e.g. first convert an image to grayscale before
inserting an additional dimension from the left for CNN processing)

• The option to keep both, the original as well as the pre-processed observation

• Implicit update of affected observation spaces according to the pre-processor functionality

3.19.2 Example 1: Observation Specific Pre-Processors

This example adds pre-processing to two observations (rgb_image and categorical_feature) contained in a dictionary
observation space.

@package wrappers
PreProcessingWrapper:

pre_processor_mapping:
- observation: rgb_image
type: maze.preprocessors.Rgb2GrayPreProcessor
keep_original: true
config:
num_flatten_dims: 2

- observation: categorical_feature
type: maze.preprocessors.OneHotPreProcessor
keep_original: false
config: {}

Details:

• Adds a gray scale converted version of observation rgb_image to the observation space but also keeps the
original observation.

• Replaces the observation categorical_feature with an one-hot encoded version and drops the original observa-
tion.

• Observations space after pre-processing: {rgb_image, rgb_image-rgb2gray, categorical_feature-one_hot})

3.19. Observation Pre-Processing 289

Maze

3.19.3 Example 2: Cascaded Pre-Processing

This example shows how to apply multiple pre-processor in sequence to a single observation.

@package wrappers
PreProcessingWrapper:

pre_processor_mapping:
- observation: rgb_image
type: maze.preprocessors.Rgb2GrayPreProcessor
keep_original: false
config:

rgb_dim: -1
- observation: rgb_image-rgb2gray

type: maze.preprocessors.ResizeImgPreProcessor
keep_original: false
config:

target_size: [96, 96]
transpose: false

- observation: rgb_image-rgb2gray-resize_img
type: maze.preprocessors.UnSqueezePreProcessor
keep_original: false
config:

dim: -3

Details:

• Converts observation rgb_image into a gray scale image, then scales this gray scale image to size 96 x 96 pixel
and finally inserts an additional dimension at index -3 to prepare the observation for CNN processing.

• None of the intermediate observations is kept as we are only interested in the final result here.

• Observations space after pre-processing: {rgb_image-rgb2gray-resize_img}).

3.19.4 Example 3: Using Custom Pre-Processors

In case the built-in pre-processors provided with Maze are not sufficient for your use case you can of course implement
and add additional custom processors.

@package wrappers
PreProcessingWrapper:

pre_processor_mapping:
- observation: rgb_image
type: my_project.preprocessors.custom.CustomPreProcessor
keep_original: true
config:
num_flatten_dims: 2

When adding a new pre-processor you (1) have to implement the PreProcessor interface and (2) make sure that it is
accessible within your Python path. Besides that you only have to provide the reference path of the pre-processor to
use.

Observations will be tagged with the filename of your custom preprocessor (e.g. rgb_image -> rgb_image-custom).

290 Chapter 3. Documentation Overview

Maze

3.19.5 Example 4: Plain Python Configuration

If you are not working with the Maze command line interface but still want to reuse observation pre-processing directly
within Python you can start with the code snippet below.

"""Contains an example showing how to use observation pre-processing directly from
→˓python."""
from maze.core.wrappers.maze_gym_env_wrapper import GymMazeEnv
from maze.core.wrappers.observation_preprocessing.preprocessing_wrapper import
→˓PreProcessingWrapper

this is the pre-processor config as a python dict
config = {

"pre_processor_mapping": [
{"observation": "observation",
"type": "maze.preprocessors.Rgb2GrayPreProcessor",
"keep_original": False,
"config": {"rgb_dim": -1}},

]
}

instantiate a maze environment
env = GymMazeEnv("CarRacing-v0")

wrap the environment for observation pre-processing
env = PreProcessingWrapper.wrap(env, pre_processor_mapping=config["pre_processor_
→˓mapping"])

after this step the training env yields pre-processed observations
pre_processed_obs = env.reset()

3.19.6 Built-in Pre-Processors

Maze already provides built-in pre-processors. You can find a list and further details on the functionality of the
respective processors in the reference documentation.

3.19.7 Where to Go Next

• After pre-processing your observations you might also want to normalize them for efficient neural network
processing using the ObservationNormalizationWrapper.

• Learn about more general environment wrappers.

3.20 Observation Normalization

For efficient RL training it is crucial that the inputs (e.g. observations) to our models (e.g. policy and value networks)
follow a certain distribution and exhibit values living within a certain range. To ensure this precondition Maze provides
general and customizable functionality for normalizing the observations returned by the respective environments via
the ObservationNormalizationWrapper.

3.20. Observation Normalization 291

Maze

This means to gain access to observation normalization and to the features listed below you simply have to add the
ObservationNormalizationWrapper to your wrapper stack in your Hydra configuration.

To get started you can also just copy one of our Hydra config snippets below or use it directly within Python.

3.20.1 List of Features

So far observation normalization supports:

• Different normalization strategies ([mean-zero-std-one, range[0, 1], . . .)

• Estimating normalization statistics from observations collected by interacting with the respective environment
(prior to training)

• Providing an action sampling policy for collecting these normalization statistics

• Manually specification of normalization statistics in case they are know beforehand

• Excluding observations such as action masks from normalization

• Preserving these statistics for continuing a training run, subsequent rollouts or deploying an agent

• Gym dictionary observation spaces

• Extendability with custom observation normalization strategies on the fly

As not all of the features listed above might be required right from the beginning you can find Hydra config examples
with increasing complexity below.

3.20.2 Example 1: Normalization with Estimated Statistics

This example applies default observation normalization to all observations with statistics automatically estimated via
sampling.

@package wrappers
ObservationNormalizationWrapper:

default behaviour
default_strategy: maze.normalization_strategies.

→˓MeanZeroStdOneObservationNormalizationStrategy
default_strategy_config:

clip_range: [~, ~]
axis: ~

default_statistics: ~

(continues on next page)

292 Chapter 3. Documentation Overview

Maze

(continued from previous page)

statistics_dump: statistics.pkl
sampling_policy:

type: maze.core.agent.random_policy.RandomPolicy
exclude: ~
manual_config: ~

Details:

• Applies mean zero - standard deviation one normalization to all observations contained in the dictionary ob-
servation space

• Does not clip observations after normalization

• Does not compute individual normalization statistics along different axis of the observation vector / matrix

• Dumps the normalization statistics to the file “statistics.pkl”

• Estimates the required statistics from observations collected via random sampling

• Does not exclude any observations from normalization

• Does not provide any normalization statistics manually

3.20.3 Example 2: Normalization with Manual Statistics

In this example, we manually specify both the default normalization strategy and its corresponding default statistics.
This is useful, e.g., when working with RGB pixel observation spaces. However, it requires to know the normalization
statistics beforehand.

@package wrappers
ObservationNormalizationWrapper:

default behaviour
default_strategy: maze.normalization_strategies.

→˓RangeZeroOneObservationNormalizationStrategy
default_strategy_config:

clip_range: [0, 1]
axis: ~

default_statistics:
min: 0
max: 255

statistics_dump: statistics.pkl
sampling_policy:

type: maze.core.agent.random_policy.RandomPolicy
exclude: ~
manual_config: ~

Details:

• Add range-zero-one normalization with manually set statistics to all observations

• Clips the normalized observation to range [0, 1] in case something goes wrong. (As this example expects RGB
pixel observations to have values between 0 and 255 this should not have an effect.)

• Subtracts 0 from each value contained in the observation vector / matrix and then divides it by 255

• The remaining settings do not have an effect here

3.20. Observation Normalization 293

Maze

3.20.4 Example 3: Custom Normalization and Excluding Observations

This advanced example shows how to utilize the full feature set of observation normalization. For explanations please
see the comments and details below.

@package wrappers
ObservationNormalizationWrapper:

default behaviour
default_strategy: maze.normalization_strategies.

→˓MeanZeroStdOneObservationNormalizationStrategy
default_strategy_config:

clip_range: [~, ~]
axis: ~

default_statistics: ~
statistics_dump: statistics.pkl
sampling_policy:

type: maze.core.agent.random_policy.RandomPolicy
observation with key action_mask gets excluded from normalization
exclude: [action_mask]
manual_config:

observation pixel_image uses manually specified normalization statistics
pixel_image:
strategy: maze.normalization_strategies.

→˓RangeZeroOneObservationNormalizationStrategy
strategy_config:
clip_range: [0, 1]
axis: ~

statistics:
min: 0
max: 255

observation feature_vector estimates normalization statistics via sampling
feature_vector:
strategy: maze.normalization_strategies.

→˓MeanZeroStdOneObservationNormalizationStrategy
strategy_config:
clip_range: [-3, 3]
normalization statistics are computed along the first axis
axis: [0]

Details:

• The default behaviour for observations without manual config is identical to example 1

• observation pixel_image: behaves as the default in example 2

• observation feature_vector:

– By setting axis to [0] in the strategy_config each element in the observation gets normalized with an
element-wise mean and standard deviation.

– Why? A feature_vector has shape (d,). After collecting N observations for computing the normalization
statistics we arrive at a stacked feature_vector-matrix with shape (N, 10). By computing the normalization
statistics along axis [0] we get normalization statistics with shape (d,) again which can be applied in an
elementwise fashion.

– Additionally each element in the vector is clipped to range [-3, 3].

• Note, that even though a manual config is provided for some observations you can still decide if you would like
to use predefined manual statistics or estimate them from sampled observations.

294 Chapter 3. Documentation Overview

Maze

3.20.5 Example 4: Using Custom Normalization Strategies

In case the normalization strategies provided with Maze are not sufficient for your use case you can of course imple-
ment and add your own strategies.

@package wrappers
ObservationNormalizationWrapper:

default behaviour
default_strategy: my_project.normalization_strategies.custom.

→˓CustomObservationNormalizationStrategy
default_strategy_config:

clip_range: [~, ~]
axis: ~

default_statistics: ~
statistics_dump: statistics.pkl
sampling_policy:

type: maze.core.agent.random_policy.RandomPolicy
exclude: ~
manual_config: ~

When adding a new normalization strategy you (1) have to implement the ObservationNormalizationStrategy in-
terface and (2) make sure that it is accessible within your Python path. Besides that you only have to provide the
reference path of the pre-processor to use.

3.20.6 Example 5: Plain Python Configuration

If you are not working with the Maze command line interface but still want to reuse observation normalization directly
within Python you can start with the code snippet below. It shows how to:

• instantiate an observation normalized environment

• estimate normalization statistics via sampling

• reuse the estimated statistics for normalization for subsequent tasks such as training or rollouts

"""Contains an example showing how to use observation normalization directly from
→˓python."""
from maze.core.agent.random_policy import RandomPolicy
from maze.core.wrappers.maze_gym_env_wrapper import GymMazeEnv
from maze.core.wrappers.observation_normalization.observation_normalization_wrapper
→˓import \

ObservationNormalizationWrapper
from maze.core.wrappers.observation_normalization.observation_normalization_utils
→˓import \

obtain_normalization_statistics

instantiate a maze environment
env = GymMazeEnv("CartPole-v0")

this is the normalization config as a python dict
normalization_config = {

"default_strategy": "maze.normalization_strategies.
→˓MeanZeroStdOneObservationNormalizationStrategy",

"default_strategy_config": {"clip_range": (None, None), "axis": 0},
"default_statistics": None,
"statistics_dump": "statistics.pkl",
"sampling_policy": RandomPolicy(env.action_spaces_dict),

(continues on next page)

3.20. Observation Normalization 295

Maze

(continued from previous page)

"exclude": None,
"manual_config": None

}

1. PREPARATION: first we estimate normalization statistics
--

wrap the environment for observation normalization
env = ObservationNormalizationWrapper.wrap(env, **normalization_config)

before we can start working with normalized observations
we need to estimate the normalization statistics
normalization_statistics = obtain_normalization_statistics(env, n_samples=1000)

2. APPLICATION (training, rollout, deployment)
--

instantiate a maze environment
training_env = GymMazeEnv("CartPole-v0")
wrap the environment for observation normalization
training_env = ObservationNormalizationWrapper.wrap(training_env, **normalization_
→˓config)

reuse the estimated the statistics in our training environment(s)
training_env.set_normalization_statistics(normalization_statistics)

after this step the training env yields normalized observations
normalized_obs = training_env.reset()

3.20.7 Built-in Normalization Strategies

Normalization strategies simply specify the way how input observations are normalized.

Maze already comes with built-in normalization strategies. You can find a list and further details on the functionality
of the respective strategies in the reference documentation.

3.20.8 The Bigger Picture

The figure below shows how observation normalization is embedded in the overall interaction loop and set the involved
components into context.

It is located in between the ObservationConversionInterface (which converts environment MazeStates
into machine readable observations) and the agent.

296 Chapter 3. Documentation Overview

Maze

According to the sampling_policy specified in the config the wrapper collects observations from the interaction loop
and uses these to estimate the normalization statistics given the provided normalization strategies.

The statistics get dumped to the pickle file specified in the config for subsequent rollouts or deploying the agent.

If normalization statistics are known beforehand this stage can be skipped by simply providing the statistics manually
in the wrapper config.

3.20.9 Where to Go Next

• Before normalizing your observations you first might want to pre-process them with the PreProcessingWrapper.

• Learn about more general environment wrappers.

3.21 Tricks of the Trade

This page contains a short list of tips and best practices that have been quite useful in our work over the last couple of
years and will hopefully also make it easier for you to train your agents. However, you should be aware that not each
item below will work in each and every application scenario. Nonetheless, if you are stuck most of them are certainly
worth to give a try!

Note: Below you find a subjective and certainly not complete collection of RL tips and tricks that will hopefully
continue to grow over time. However, if you stumble upon something crucial that is missing from the list, which you

would like to share with the RL community and us do not hesitate to get in touch and discuss with us!

3.21. Tricks of the Trade 297

mailto:office@enlite.ai
https://github.com/enlite-ai/maze/issues

Maze

Overview

• Learning and Optimization

• Models and Networks

• Observations

3.21.1 Learning and Optimization

Action Masking

Use action masking whenever possible! This can be crucial as it has the potential to drastically reduce the exploration
space of your problem, which usually leads to a reduced learning time and better overall results. In some cases action
masking also mitigates the need for reward shaping as invalid actions are excluded from sampling and there is no need
to penalize them with negative rewards any more. If you want to learn more we recommend to check out the tutorial
on structured environments and action masking.

Reward Scaling and Shaping

Make sure that your step rewards are in a reasonable range (e.g., [-1, 1]) not spanning various orders of
magnitude. If these conditions are not fulfilled you might want to apply reward scaling or clipping (see
RewardScalingWrapper, RewardClippingWrapper) or manually shape your reward.

Reward and Key Performance Indicator (KPI) Monitoring

When optimizing multi-target objectives (e.g., a weighted sum of sub-rewards) consider to monitor the contributing
rewards on an individual basis. Event though the overall reward appears to not improve anymore it might still be the
case that the contributing sub-rewards change or fluctuate in the background. This indicates that the policy and in
turn the behaviour of your agent is still changing. In such settings we recommend to watch the learning progress by
monitoring KPIs.

3.21.2 Models and Networks

Network Design

Design use case and task specific custom network architectures whenever required. In a straight forward case this
might be a CNN when processing image observations but it could also be a Graph Convolution Network (GCN) when
working with graph or grid observations. To do so, you might want to check out the Perception Module, the built-in
network building blocks as well as the section on how to work with custom models.

Further, you might want to consider behavioural cloning (BC) to design and tweak

• the network architectures

• the observations that are fed into these models

This requires that an imitation learning dataset fulfilling the pre-conditions for supervised learning is available. If so,
incorporating BC into the model and observation design process can save a lot of time and compute as you are now
training in a supervised learning setting. Intuition: If a network architecture, given the corresponding observations,
is able to fit an offline trajectory dataset (without severe over-fitting) it might also be a good choice for actual RL
training. If this is relevant to you, you can follow up on how to employ imitation learning with Maze.

Continuous Action Spaces

298 Chapter 3. Documentation Overview

Maze

When facing bounded continuous action spaces use Squashed Gaussian or Beta probability distributions for
your action heads instead of an unbounded Gaussian. This avoids action clipping and limits the space of explorable
actions to valid regions. You can learn in the section about distributions and acton heads how you can easily switch
between different probability distributions using the DistributionMapper.

Action Head Biasing

If you would like to incorporate prior knowledge about the selection frequency of certain actions you could consider
to bias the output layers of these action heads towards the expected sampling distribution after randomly initializing
the weights of your networks (e.g., compute_sigmoid_bias).

3.21.3 Observations

Observation Normalization

For efficient RL training it is crucial that the inputs (e.g. observations) to our models (e.g. policy and value networks)
follow a certain distribution and exhibit values within certain ranges. To ensure this precondition consider to normalize
your observations before actual training by either:

• manually specifying normalization statistics (e.g, divide by 255 for uint8 RGB image observations)

• compute statistics from observations sampled by interacting with the environment

As this is a recurring, boilerplate code heavy task, Maze already provides built-in customizable functionality for
normalizing the observations.

Observation Pre-Processing

When feeding categorical observations to your models consider to convert them to their one-hot encoded vectorized
counterparts. This representation is better suited for neural network processing and a common practice for exam-
ple in Natural Language Processing (NLP). In Maze you can achieve this via observation pre-processing and the
OneHotPreProcessor.

3.22 Structured Environments and Action Masking

This tutorial provides a step by step guide explaining how to implement a decision problem as a structured environment
and how to train an agent for such a StructuredEnv with a structured Maze Trainer. The examples are again based
on the online version of the Guillotine 2D Cutting Stock Problem which is a perfect fit for introducing the underlying
concepts.

In particular, we will see how to evolve the performance of an RL agent by going through the following stages:

1. Flat Gym-style environment with vanilla feed forward models

2. Structured environment (e.g., with hierarchical sub-steps) with task specific policy networks

3. Structured environment (e.g., with hierarchical sub-steps) with masked task specific policy networks

3.22. Structured Environments and Action Masking 299

Maze

Before diving into this tutorial we recommend to familiarize yourself with the basic Maze - step by step tutorial.

The remainder of this tutorial is structured as follows:

3.22.1 Turning a “flat” MazeEnv into a StructuredEnv

In this part of the tutorial we will learn how to reformulate an RL problem in order to turn it from a “flat” Gym-style
environment into a structured environment.

The complete code for this part of the tutorial can be found here

relevant files
- cutting_2d

- main.py
- env

- struct_env.py

Page Overview

• Analyzing the Problem Structure

• Implementing the Structured Environment

• Test Script

300 Chapter 3. Documentation Overview

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part06_struct_env

Maze

Analyzing the Problem Structure

Before we start implementing the structured environment lets first revisit the cutting 2D problem. In particular, we put
our attention to the joint action space consisting of the following components:

• Action 𝑎0: cutting piece selection (decides which piece from inventory to use for cutting)

• Action 𝑎1: cutting orientation selection (decides on the orientation of the cut)

• Action 𝑎2: cutting order selection (decides which cut to take first; x or y)

Analysis of Action Space and Problem:

• We are facing a combinatorial action space with 𝑂(𝑁 · 2 · 2) possible actions the agent has to choose from in
each step. 𝑁 is the maximum number of pieces stored in the inventory.

• Sampling from this joint action space might result in invalid cutting configurations. This is because the three
sub-actions are treated independently from each other. For the problem at hand this is obviously not the case.

• It would be much more intuitive to sample the sub-actions sequentially and conditioned on each other. (E.g., it
seems to be easier to decide on the cutting order and orientation once we know the piece we will cut from.)

Implementing the Structured Environment

We now address the issues discovered in the previous section and re-formulate the cutting 2D problem as a
StructuredEnv with the following two sub-steps:

• Select cutting piece from inventory given inventory state and customer order.

• Select cutting configuration (cutting order and cutting orientation) given customer order and inventory cutting
piece selected in the previous sub-step.

This could be also described with the modified agent environment interaction loop shown in the figure below. Note that
the both observation and action space differ between the selection and the cutting sub-step. For the present example,
reward is only granted once the cutting sub-step (i.e., the second step) is complete.

3.22. Structured Environments and Action Masking 301

Maze

Note: Conceptually structured environments and conditional sub-steps are related to auto-regressive action spaces
where subsequent actions are sampled conditioned on their predecessors. [e.g. DeepMind (2019), “Grandmaster level
in StarCraft II using multi-agent reinforcement learning.”]

The code for the StructuredCutting2DEnvironment below implements exactly this interaction pattern.

Listing 1: env/struct_env.py

from copy import deepcopy
from typing import Dict, Any, Union, Tuple, Optional, List

import gym
import numpy as np
from maze.core.env.maze_action import MazeActionType
from maze.core.env.maze_env import MazeEnv
from maze.core.env.maze_state import MazeStateType
from maze.core.env.structured_env import StructuredEnv
from maze.core.env.structured_env_spaces_mixin import StructuredEnvSpacesMixin
from maze.core.wrappers.wrapper import Wrapper
from .maze_env import maze_env_factory

class StructuredCutting2DEnvironment(Wrapper[MazeEnv], StructuredEnv,
→˓StructuredEnvSpacesMixin):

"""Structured environment version of the cutting 2D environment.
The environment alternates between the two sub-steps:

- Select cutting piece
- Select cutting configuration (cutting order and cutting orientation)

:param maze_env: The "flat" cutting 2D environment to wrap.
"""

def __init__(self, maze_env: MazeEnv):
Wrapper.__init__(self, maze_env)

define sub-step action spaces
self._action_spaces_dict = {

0: gym.spaces.Dict({"piece_idx": maze_env.action_space["piece_idx"]}),
1: gym.spaces.Dict({"cut_rotation": maze_env.action_space["cut_rotation"],

"cut_order": maze_env.action_space["cut_order"]})
}

define sub-step observation spaces
flat_space = maze_env.observation_space

(continues on next page)

302 Chapter 3. Documentation Overview

Maze

(continued from previous page)

self._observation_spaces_dict = {
0: flat_space,
1: gym.spaces.Dict({"selected_piece": flat_space["ordered_piece"],

"ordered_piece": flat_space["ordered_piece"]})
}

self._flat_obs = None
self._action_0 = None
self._sub_step_key = 0

def step(self, action):
"""Generic step function alternating between the two sub-steps.
:return: obs, rew, done, info
"""
sub-step: Select cutting piece
if self._sub_step_key == 0:

sub_step_result = self._selection_step(action)
sub-step: Select cutting configuration
elif self._sub_step_key == 1:

sub_step_result = self._cutting_step(action)
else:

raise ValueError("Sub-step id {} not allowed for this environment!".
→˓format(self._sub_step_key))

alternate step index
self._sub_step_key = np.mod(self._sub_step_key + 1, 2)

return sub_step_result

def reset(self) -> Any:
"""Resets the environment and returns the initial state.
:return: The initial state after resetting.
"""
self._flat_obs = self.env.reset()
self._flat_obs["ordered_piece"] = self._flat_obs["ordered_piece"]

self._sub_step_key = 0
return self._obs_selection_step(self._flat_obs)

@staticmethod
def _obs_selection_step(flat_obs: Dict[str, np.array]) -> Dict[str, np.array]:

"""Formats initial observation / observation available for the first sub-step.
→˓"""

return deepcopy(flat_obs)

@staticmethod
def _obs_cutting_step(flat_obs: Dict[str, np.array], selected_piece_idx: int) ->

→˓Dict[str, np.array]:
"""Formats observation available for the second sub-step."""
return {"selected_piece": flat_obs["inventory"][selected_piece_idx],

"ordered_piece": flat_obs["ordered_piece"]}

def _selection_step(self, action: Dict[str, int]) -> Tuple[Dict[str, np.ndarray],
→˓float, bool, Dict]:

"""Cutting piece selection step."""
self._action_0 = action
obs = self._obs_cutting_step(self._flat_obs, action["piece_idx"])

(continues on next page)

3.22. Structured Environments and Action Masking 303

Maze

(continued from previous page)

return obs, 0.0, False, {}

def _cutting_step(self, action: Dict[str, int]) -> Tuple[Dict[str, np.ndarray],
→˓float, bool, Dict]:

"""Cutting rotation and cutting order selection step."""
flat_action = {"piece_idx": self._action_0["piece_idx"],

"cut_rotation": action["cut_rotation"],
"cut_order": action["cut_order"]}

self._flat_obs, rew, done, info = self.env.step(flat_action)
self._flat_obs["ordered_piece"] = self._flat_obs["ordered_piece"]

return self._obs_selection_step(self._flat_obs), rew, done, info

def actor_id(self) -> Tuple[Union[str, int], int]:
"""Returns the currently executed actor along with the policy id. The id is

→˓unique only with
respect to the policies (every policy has its own actor 0).
Note that identities of done actors can not be reused in the same rollout.

:return: The current actor, as tuple (policy id, actor number).
"""
return self._sub_step_key, 0

def is_actor_done(self) -> bool:
"""Returns True if the just stepped actor is done, which is different to the

→˓done flag of the environment."""
return False

@property
def action_space(self) -> gym.spaces.Dict:

"""Implementation of :class:`~maze.core.env.structured_env_spaces_mixin.
→˓StructuredEnvSpacesMixin` interface."""

return self._action_spaces_dict[self._sub_step_key]

@property
def observation_space(self) -> gym.spaces.Dict:

"""Implementation of :class:`~maze.core.env.structured_env_spaces_mixin.
→˓StructuredEnvSpacesMixin` interface."""

return self._observation_spaces_dict[self._sub_step_key]

@property
def action_spaces_dict(self) -> Dict[Union[int, str], gym.spaces.Dict]:

"""Implementation of :class:`~maze.core.env.structured_env_spaces_mixin.
→˓StructuredEnvSpacesMixin` interface."""

return self._action_spaces_dict

@property
def observation_spaces_dict(self) -> Dict[Union[int, str], gym.spaces.Dict]:

"""Implementation of :class:`~maze.core.env.structured_env_spaces_mixin.
→˓StructuredEnvSpacesMixin` interface."""

return self._observation_spaces_dict

def seed(self, seed: int = None) -> None:
"""Sets the seed for this environment's random number generator(s).
:param: seed: the seed integer initializing the random number generator.
"""

(continues on next page)

304 Chapter 3. Documentation Overview

Maze

(continued from previous page)

self.env.seed(seed)

def close(self) -> None:
"""Performs any necessary cleanup."""
self.env.close()

def get_observation_and_action_dicts(self, maze_state: MazeStateType, maze_
→˓action: MazeActionType,

first_step_in_episode: bool) \
-> Tuple[Optional[Dict[Union[int, str], Any]], Optional[Dict[Union[int,

→˓str], Any]]]:
"""Convert the flat action and MazeAction from Maze env into the structured

→˓ones.

Note that both MazeState and MazeAction needs to be supplied together,
→˓otherwise actions/observations for the

individual sub-steps cannot be produced.
"""
assert maze_state is not None and maze_action is not None,\

"This wrapper needs both MazeState and MazeAction for the conversion (as
→˓there are multiple sub-steps)."

observation_dict, action_dict = self.env.get_observation_and_action_
→˓dicts(maze_state, maze_action,

→˓first_step_in_episode)
assert len(observation_dict.items()) == 1 and len(action_dict.items()) == 1,

→˓"wrapped env should be single-step"

flat_action = list(action_dict.values())[0]
flat_obs = list(observation_dict.values())[0]

flat_obs["ordered_piece"] = flat_obs["ordered_piece"]

obs_dict = {
0: self._obs_selection_step(flat_obs),
1: self._obs_cutting_step(flat_obs, flat_action["piece_idx"])

}

act_dict = {
0: {k: flat_action[k] for k in ["piece_idx"]},
1: {k: flat_action[k] for k in ["cut_rotation", "cut_order"]}

}

return obs_dict, act_dict

def struct_env_factory(max_pieces_in_inventory: int, raw_piece_size: Tuple[int, int],
static_demand: List[Tuple[int, int]]) ->

→˓StructuredCutting2DEnvironment:
"""Convenience factory function that compiles a trainable structured environment.
(for argument details see: Cutting2DEnvironment)
"""

init maze environment including observation and action interfaces
env = maze_env_factory(max_pieces_in_inventory=max_pieces_in_inventory,

raw_piece_size=raw_piece_size,
static_demand=static_demand)

(continues on next page)

3.22. Structured Environments and Action Masking 305

Maze

(continued from previous page)

convert flat to structured environment
return StructuredCutting2DEnvironment(env)

Test Script

The following snippet first instantiates the structured environment and then performs one cycle of the structured agent
environment interaction loop.

Listing 2: main.py

""" Test script CoreEnv """
from tutorials.tutorial_maze_env.part06_struct_env.env.struct_env import struct_env_
→˓factory

def main():
init maze environment including observation and action interfaces
struct_env = struct_env_factory(max_pieces_in_inventory=200,

raw_piece_size=(100, 100),
static_demand=[(30, 15)])

reset env
obs_step1 = struct_env.reset()

print("action_space 1: ", struct_env.action_space)
print("observation_space 1:", struct_env.observation_space)
print("observation 1: ", obs_step1.keys())

take first env step
action_1 = struct_env.action_space.sample()
obs_step2, rew, done, info = struct_env.step(action=action_1)

print("action_space 2: ", struct_env.action_space)
print("observation_space 2:", struct_env.observation_space)
print("observation 2: ", obs_step2.keys())

take second env step
action_2 = struct_env.action_space.sample()
obs_step1 = struct_env.step(action=action_2)

if __name__ == "__main__":
""" main """
main()

Running the script will print the following output. Note that the observation and action spaces alternate from sub-step
to sub-step.

action_space 1: Dict(piece_idx:Discrete(200))
observation_space 1: Dict(inventory:Box(200, 2), inventory_size:Box(1,), order:Box(2,
→˓))
observation 1: dict_keys(['inventory', 'inventory_size', 'order'])
action_space 2: Dict(order:Discrete(2), rotation:Discrete(2))
observation_space 2: Dict(order:Box(2,), selected_piece:Box(1, 2))

(continues on next page)

306 Chapter 3. Documentation Overview

Maze

(continued from previous page)

observation 2: dict_keys(['selected_piece', 'order'])

In the next part of this tutorial we will train an agent on this structured environment.

3.22.2 Training the Structured Environment

In this part of the tutorial we will learn how to train an agent with a Maze trainer implicitly supporting a Structured
Environment. We will also design a policy network architecture matching the task at hand.

The complete code for this part of the tutorial can be found here

relevant files
- cutting_2d

- conf
- env

- tutorial_cutting_2d_flat.yaml
- tutorial_cutting_2d_struct.yaml

- model
- tutorial_cutting_2d_flat.yaml
- tutorial_cutting_2d_struct.yaml

- wrappers
- tutorial_cutting_2d.yaml

- models
- actor.py
- critic.py

Page Overview

• A Simple Problem Setting

• Task-Specific Actor-Critic Model

• Multi-Step Training

A Simple Problem Setting

To emphasize the effects of action masking throughout this tutorial we devise a simple problem instance of the cutting
2d environment with the following properties:

Given the raw piece size and the items in the static demand (appear in an alternating fashion) we can cut six customer
orders from one raw inventory piece. When limiting the episode length to 180 time steps the optimal solution with
respect to new raw pieces from inventory is 31 (30 + 1 because the environment adds a new piece whenever the current
one has been cut).

3.22. Structured Environments and Action Masking 307

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part06_struct_env

Maze

Task-Specific Actor-Critic Model

For this advanced tutorial we make use of Maze custom models to compose an actor-critic architecture that is
geared towards the respective sub-tasks. Our structured environment requires two policies, one for piece se-
lection and one for cutting parametrization. For each of the two sub-step policies we also build a distinct
state critic (see StepStateCriticComposer for details). Note that it would be also possible to employ a
SharedStateCriticComposer used to compute the advantages for both policies.

The images below show the for network architectures (click to view in large). For further details on how to build the
models we refer to the accompanying repository and the section on how to work with custom models.

Piece Selection Policy Cutting Policy Piece Selection Critic Cutting Critic

Some notes on the models:

• The selection policy takes the current inventory and the ordered piece as input and predicts a selection probability
(piece_idx) for each inventory option.

• The cutting policy takes the ordered piece and the selected piece (previous step) as input and predicts cutting
rotation and cutting order.

• The critic models have an analogous structure but predict the state-value instead of action logits.

Multi-Step Training

Given the models designed in the previous section we are now ready to train our first agent on a Structured Environ-
ment. We already mentioned that Maze trainers directly support the training of Structured Environments such as the
StructuredCutting2DEnvironment implemented in the previous part of this tutorial.

To start training a cutting policy with the PPO trainer, run:

maze-run -cn conf_train env=tutorial_cutting_2d_struct wrappers=tutorial_cutting_2d \
model=tutorial_cutting_2d_struct algorithm=ppo

As usual, we can watch the training progress with Tensorboard.

tensorboard --logdir outputs

308 Chapter 3. Documentation Overview

Maze

We can see that the reward slowly approaches the optimum. Note that the performance of this agent is already much
better than the vanilla Gym-style model we employed in the introductory tutorial (compare evolution of rewards
above).

However, the event logs also reveal that the agent initially samples many invalid actions (e.g, invalid_cut and in-
valid_piece_selected). This is sample inefficient and slows down the learning progress.

Next, we will further improve the agent by avoiding sampling of these invalid choices via action masking.

3.22.3 Adding Step-Conditional Action Masking

In this part of the tutorial we will learn how to substantially increase the sample efficiency of our agents by adding
sub-step conditional action masking to the structured environment.

The complete code for this part of the tutorial can be found here

relevant files
- cutting_2d

- main.py
- env

- struct_env_masked.py

Page Overview

• Masked Structured Environment

• Test Script

In particular, we will add two different masks:

• Inventory_mask: allows to only select cutting pieces from inventory slots actually holding a piece that would
allow to fulfill the customer order.

3.22. Structured Environments and Action Masking 309

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part06_struct_env

Maze

• Rotation_mask: allows to only specify valid cutting rotations (e.g., the ordered piece fits into the cutting piece
from inventory). Note that providing this mask is only possible once the cutting piece has been selected in the
first sub-step - hence the name step-conditional masking.

The figure below provides a sketch of the two masks.

Only the first two inventory pieces are able to fit the customer order. The four rightmost inventory slots do not hold a
piece at all and are also masked. When rotating the piece by 90° for cutting the customer order would not fit into the
selected inventory piece which is why we can simply mask this option.

Masked Structured Environment

One way to incorporate the two masks in our structured environment is to simply inherit from the initial version and
extend it by the following changes:

• Add the two masks to the observation spaces (e.g., inventory_mask and cutting_mask)

• Compute the actual mask for the two sub-steps in the respective functions (e.g., _obs_selection_step
and _obs_cutting_step).

Listing 3: env/struct_env_masked.py

from copy import deepcopy
from typing import Dict, List, Tuple

import gym
import numpy as np
from tutorials.tutorial_maze_env.part06_struct_env.env.maze_env import maze_env_
→˓factory
from tutorials.tutorial_maze_env.part06_struct_env.env.struct_env import
→˓StructuredCutting2DEnvironment
from maze.core.env.maze_env import MazeEnv

class MaskedStructuredCutting2DEnvironment(StructuredCutting2DEnvironment):
"""Structured environment version of the cutting 2D environment.
The environment alternates between the two sub-steps:

- Select cutting piece
- Select cutting configuration (cutting order and cutting orientation)

:param maze_env: The "flat" cutting 2D environment to wrap.
"""

(continues on next page)

310 Chapter 3. Documentation Overview

Maze

(continued from previous page)

def __init__(self, maze_env: MazeEnv):
super().__init__(maze_env)

add masks to observation spaces
max_inventory = self.observation_conversion.max_pieces_in_inventory
self._observation_spaces_dict[0].spaces["inventory_mask"] = \

gym.spaces.Box(low=np.float32(0), high=np.float32(1), shape=(max_
→˓inventory,), dtype=np.float32)

self._observation_spaces_dict[1].spaces["cutting_mask"] = \
gym.spaces.Box(low=np.float32(0), high=np.float32(1), shape=(2,),

→˓dtype=np.float32)

@staticmethod
def _obs_selection_step(flat_obs: Dict[str, np.array]) -> Dict[str, np.array]:

"""Formats initial observation / observation available for the first sub-step.
→˓"""

observation = deepcopy(flat_obs)

prepare inventory mask
sorted_order = np.sort(observation["ordered_piece"].flatten())
sorted_inventory = np.sort(observation["inventory"], axis=1)

observation["inventory_mask"] = np.all(observation["inventory"] > 0, axis=1).
→˓astype(np.float32)

for i in np.nonzero(observation["inventory_mask"])[0]:
exclude pieces which do not fit
observation["inventory_mask"][i] = np.all(sorted_order <= sorted_

→˓inventory[i])

return observation

@staticmethod
def _obs_cutting_step(flat_obs: Dict[str, np.array], selected_piece_idx: int) ->

→˓Dict[str, np.array]:
"""Formats observation available for the second sub-step."""

selected_piece = flat_obs["inventory"][selected_piece_idx]
ordered_piece = flat_obs["ordered_piece"]

prepare cutting action mask
cutting_mask = np.zeros((2,), dtype=np.float32)

selected_piece = selected_piece.squeeze()
if np.all(flat_obs["ordered_piece"] <= selected_piece):

cutting_mask[0] = 1.0

if np.all(flat_obs["ordered_piece"][::-1] <= selected_piece):
cutting_mask[1] = 1.0

return {"selected_piece": selected_piece,
"ordered_piece": ordered_piece,
"cutting_mask": cutting_mask}

def struct_env_factory(max_pieces_in_inventory: int, raw_piece_size: Tuple[int, int],
static_demand: List[Tuple[int, int]]) ->

→˓StructuredCutting2DEnvironment: (continues on next page)

3.22. Structured Environments and Action Masking 311

Maze

(continued from previous page)

"""Convenience factory function that compiles a trainable structured environment.
(for argument details see: Cutting2DEnvironment)
"""

init maze environment including observation and action interfaces
env = maze_env_factory(max_pieces_in_inventory=max_pieces_in_inventory,

raw_piece_size=raw_piece_size,
static_demand=static_demand)

convert flat to structured environment
return MaskedStructuredCutting2DEnvironment(env)

Test Script

When re-running the main script of the previous section with the masked version of the structured environment we
now get the following output:

action_space 1: Dict(piece_idx:Discrete(200))
observation_space 1: Dict(inventory:Box(200, 2), inventory_size:Box(1,), ordered_
→˓piece:Box(2,), inventory_mask:Box(200,))
observation 1: dict_keys(['inventory', 'inventory_size', 'ordered_piece',
→˓'inventory_mask'])
action_space 2: Dict(cut_order:Discrete(2), cut_rotation:Discrete(2))
observation_space 2: Dict(ordered_piece:Box(2,), selected_piece:Box(2,), cutting_
→˓mask:Box(2,))
observation 2: dict_keys(['selected_piece', 'ordered_piece', 'cutting_mask'])

As expected, both masks are contained in the respective observations and spaces. In the next section we will utilize
these masks to enhance the sample efficiency ouf our trainers.

3.22.4 Training with Action Masking

In this part of the tutorial we will retrain the environment with step-conditional action masking activated and bench-
mark it with the initial, unmasked version.

The complete code for this part of the tutorial can be found here

relevant files
- cutting_2d

- conf
- env

- tutorial_cutting_2d_flat.yaml
- tutorial_cutting_2d_struct.yaml
- tutorial_cutting_2d_struct_masked.yaml

- model
- tutorial_cutting_2d_flat.yaml
- tutorial_cutting_2d_struct.yaml
- tutorial_cutting_2d_struct_masked.yaml

- wrappers
- tutorial_cutting_2d.yaml

- models
- actor.py
- critic.py

312 Chapter 3. Documentation Overview

https://github.com/enlite-ai/maze-examples/tree/main/tutorial_maze_env/part06_struct_env

Maze

Page Overview

• Masked Policy Models

• Retraining with Masking

• In Depth Inspection of Learning Progress

Masked Policy Models

Before we can retrain the masked version of the structured environment we first need to specify how the masks are
employed within the models. For this purpose we extend the two policy models with an ActionMaskingBlock
applied to the respective logits. The resulting models are shown below:

Masked Piece
Selection Policy

Masked Cutting Policy Piece Selection Critic Cutting Critic

Retraining with Masking

maze-run -cn conf_train env=tutorial_cutting_2d_struct_masked wrappers=tutorial_
→˓cutting_2d \
model=tutorial_cutting_2d_struct_masked algorithm=ppo

Once training has finished we can again inspect the progress with Tensorboard. To get a better feeling for the effect of
action masking we benchmark the following versions of the environment:

• Flat Gym-style environment with vanilla feed forward models (red)

• Structured Environment (e.g., with hierarchical sub-steps) with task specific policy networks (orange)

• Structured Environment (e.g., with hierarchical sub-steps) with masked, task specific policy networks (blue)

3.22. Structured Environments and Action Masking 313

Maze

First of all we can observe a massive increase in learning speed when activating action masking. In fact the reward
of the masked model starts at an much higher initial value. We can also observe a substantial improvement when
switching from the vanilla feed forward Gym-style example (red) to the structured environment using task specific
custom models (orange).

In Depth Inspection of Learning Progress

In this section we make use of Maze Event Logging System to learn more about the learning progress and behaviour
of the respective versions.

• When looking at the cutting events we see that the agent utilizing action masking only performs valid cutting
attempts right from the beginning of the training process. Avoiding the part where the agent has to learn via
reward shaping which cuts are actually possible allows it to focus on learning how to cut efficiently. For the two
other versions exactly the latter is the case.

• The same observation holds for the piece selection policy where again a lot of invalid attempts take place for the
two unmasked versions.

• Finally, when looking at the inventory statistics we can see that the masked agent keeps very few pieces in

314 Chapter 3. Documentation Overview

Maze

inventory (pieces in inventory) which is why it never has to discard any piece (pieces discarded) that might be
required to fulfill upcoming customer orders.

Turning a “flat” MazeEnv into a StructuredEnv We will reformulate the problem from a “flat” Gym-style environment
into a structured environment.

Training the Structured Environment We will train the structured environment with a Maze Trainer.

Adding Step-Conditional Action Masking We will learn how to substantially increase the sample efficiency by adding
step-conditional action masking.

Training with Action Masking We will retrain the structured environment with step-conditional action masking acti-
vated and benchmark it with the initial version environment.

3.23 Integrating an Existing Gym Environment

Maze supports a seamless integration of existing OpenAI Gym environments. To get full Maze feature support for
Gym environments we first have to transform them into Maze environments. This page shows how this is easily
accomplished via the GymMazeEnv.

A Gym environment is transformed into a GymMazeEnv by:

• Wrapping the Gym environment into a GymCoreEnv .

• This requires transforming the observation and action spaces into a dictionary spaces via the
GymObservationConversion and GymActionConversion interfaces.

• Finally, the GymCoreEnv is packed into a GymMazeEnv which is fully compatible with all other Maze com-
ponents and modules.

To get a better understanding of the overall structure please refer to the Maze environment hierarchy.

3.23.1 Instantiating a Gym Environment as a Maze Environment

The config snippet below shows how to instantiate an existing, already registered Gym environment as a GymMazeEnv
referenced by its environment name (here CartPole-v0).

@package env
type: maze.core.wrappers.maze_gym_env_wrapper.make_gym_maze_env
name: "CartPole-v0"

To achieve the same result directly with plain Python you can start with the code snippet below.

from maze.core.wrappers.maze_gym_env_wrapper import GymMazeEnv
env = GymMazeEnv(env="CartPole-v0")

In case your environment is not yet registered with Gym you can also directly instantiate the Gym environment before
passing it to the GymMazeEnv. This might be useful in case you already have your own custom Gym environments
implemented.

3.23. Integrating an Existing Gym Environment 315

https://gym.openai.com/docs/

Maze

import gym
from maze.core.wrappers.maze_gym_env_wrapper import GymMazeEnv
gym_env = gym.make("CartPole-v0")
env = GymMazeEnv(env=gym_env)

3.23.2 Where to Go Next

• For further details please see the reference documentation.

• Next you might be interested in how to train an agent for your environment.

• You might also want to read up on the Maze environment hierarchy for the bigger picture.

3.24 Combining Maze with other RL Frameworks

This tutorial explains how to use general Maze features in combination with existing RL frameworks. In particular, we
will apply observation normalization before optimizing a policy with the stable-baselines3 A2C trainer. When adding
new features to Maze we put a strong emphasis on reusablity to allow you to make use of as much of these features as
possible but still give you the opportunity to stick to the optimization framework you are most comfortable or familiar
with.

Since RLlib already has a dedicated spot within Maze we rely on stable-baselines3 for this tutorial. However, it is
important to note that the examples below will also work with any other Python-based RL framework compatible with
Gym environments.

We provide two different versions showing how to arrive at an observation normalized environment. The first one is
written in plain Python where the second reproduces the Python example with a Hydra configuration.

Note: Although, this tutorial explains how to reuse observation normalization there is of course no limitation to this
sole feature. So if you find this useful we definitely recommend you to browse through our Environment Customization
section in the sidebar.

3.24.1 Reusing Environment Customization Features

The basis for this tutorial is the official getting started snippet of stable-baselines showing how to train and run A2C
on a CartPole environment. We added a few comments to make things a bit more explicit.

If you would like to run this example yourself make sure to install stable-baselines3 first.

"""
Getting started example from:
https://stable-baselines3.readthedocs.io/en/master/guide/quickstart.html
"""

import gym
from stable_baselines3 import A2C

ENV INSTANTIATION

env = gym.make('CartPole-v0')

(continues on next page)

316 Chapter 3. Documentation Overview

https://stable-baselines3.readthedocs.io/en/master/index.html
https://docs.ray.io/en/master/rllib.html
https://stable-baselines3.readthedocs.io/en/master/index.html
https://stable-baselines3.readthedocs.io/en/master/guide/quickstart.html
https://stable-baselines3.readthedocs.io/en/master/guide/install.html

Maze

(continued from previous page)

TRAINING AND ROLLOUT

model = A2C('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)

obs = env.reset()
for i in range(1000):

action, _state = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render()
if done:

obs = env.reset()

Below you find exactly the same example but with an observation normalized environment. The following modifica-
tions compared to the example above are required:

• Instantiate a GymMazeEnv instead of a standard Gym environment

• Wrap the environment with the ObservationNormalizationWrapper

• Estimate normalization statistics from actual environment interactions

As you might already have experienced, re-coding these steps for different environments and experiments can get quite
cumbersome. The wrapper also dumps the estimated statistics in a file (statistics.pkl) to reuse them later on for agent
deployment.

"""
Contains an example showing how to train
an observation normalized maze environment with stable-baselines.
"""

from maze.core.agent.random_policy import RandomPolicy
from maze.core.wrappers.maze_gym_env_wrapper import GymMazeEnv
from maze.core.wrappers.no_dict_spaces_wrapper import NoDictSpacesWrapper
from maze.core.wrappers.observation_normalization.observation_normalization_utils
→˓import \

obtain_normalization_statistics
from maze.core.wrappers.observation_normalization.observation_normalization_wrapper
→˓import \

ObservationNormalizationWrapper

from stable_baselines3 import A2C

ENV INSTANTIATION: a GymMazeEnv instead of a gym.Env
--
env = GymMazeEnv('CartPole-v0')

OBSERVATION NORMALIZATION

we wrap the environment with the ObservationNormalizationWrapper
(you can find details on this in the section on observation normalization)
env = ObservationNormalizationWrapper(

env=env,
default_strategy="maze.normalization_strategies.

→˓MeanZeroStdOneObservationNormalizationStrategy",
default_strategy_config={"clip_range": (None, None), "axis": 0},

(continues on next page)

3.24. Combining Maze with other RL Frameworks 317

Maze

(continued from previous page)

default_statistics=None, statistics_dump="statistics.pkl",
sampling_policy=RandomPolicy(env.action_spaces_dict),
exclude=None, manual_config=None)

next we estimate the normalization statistics by
(1) collecting observations by randomly sampling 1000 transitions from the
→˓environment
(2) computing the statistics according to the define normalization strategy
normalization_statistics = obtain_normalization_statistics(env, n_samples=1000)
env.set_normalization_statistics(normalization_statistics)

after this step all observations returned by the environment will be normalized

stable-baselines does not support dict spaces so we have to remove them
env = NoDictSpacesWrapper(env)

TRAINING AND ROLLOUT (remains unchanged)
--

model = A2C('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)

obs = env.reset()
for i in range(1000):

action, _state = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render()
if done:

obs = env.reset()

3.24.2 Reusing the Hydra Configuration System

This example is identical to the the previous one but instead of instantiated everything directly from Python it utilizes
the Hydra configuration system.

"""
Contains an example showing how to train an observation normalized maze environment
instantiated from a hydra config with stable-baselines.
"""

from maze.core.utils.config_utils import make_env_from_hydra
from maze.core.wrappers.no_dict_spaces_wrapper import NoDictSpacesWrapper
from maze.core.wrappers.observation_normalization.observation_normalization_utils
→˓import \

obtain_normalization_statistics

from stable_baselines3 import A2C

ENV INSTANTIATION: from hydra config file

env = make_env_from_hydra("conf")

OBSERVATION NORMALIZATION

(continues on next page)

318 Chapter 3. Documentation Overview

Maze

(continued from previous page)

next we estimate the normalization statistics by
(1) collecting observations by randomly sampling 1000 transitions from the
→˓environment
(2) computing the statistics according to the define normalization strategy
normalization_statistics = obtain_normalization_statistics(env, n_samples=1000)
env.set_normalization_statistics(normalization_statistics)

stable-baselines does not support dict spaces so we have to remove them
env = NoDictSpacesWrapper(env)

TRAINING AND ROLLOUT (remains unchanged)
--

model = A2C('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)

obs = env.reset()
for i in range(1000):

action, _state = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render()
if done:

obs = env.reset()

This is the corresponding hydra config:

@package _global_

defines environment to instantiate
env:

type: maze.core.wrappers.maze_gym_env_wrapper.GymMazeEnv
env: "CartPole-v0"

defines wrappers to apply
wrappers:

Observation Normalization Wrapper
ObservationNormalizationWrapper:
default_strategy: maze.normalization_strategies.

→˓MeanZeroStdOneObservationNormalizationStrategy
default_strategy_config:

clip_range: [~, ~]
axis: 0

default_statistics: ~
statistics_dump: statistics.pkl
sampling_policy:
type: maze.core.agent.random_policy.RandomPolicy

exclude: ~
manual_config: ~

3.24. Combining Maze with other RL Frameworks 319

Maze

3.24.3 Where to Go Next

• You can learn more about the Hydra configuration system.

• As observation normalization is not the scope of this section we recommend to read up on this in the dedicated
section.

• You might be also interested in observation pre-processing and the remaining environment customization op-
tions (see sidebar Environment Customization).

• You can also check out the built-in Maze Trainers with full dictionary space support for observations and actions.

• You can also make use of the full Maze environment hierarchy.

3.25 Rollout and Training Examples

Run a rollout to test an environment with random action sampling:

maze-run -cn conf_rollout env.name=CartPole-v1 policy=random_policy

Run a rollout and render the state of the environment:

maze-run -cn conf_rollout env.name=CartPole-v1 policy=random_policy \
runner=sequential runner.render=true

Train a policy with evolutionary strategies (ES):

maze-run -cn conf_train env.name=CartPole-v1 algorithm=es model=vector_obs

Train a policy with with an actor-critic trainer such as A2C:

maze-run -cn conf_train env.name=CartPole-v1 algorithm=a2c \
model=vector_obs critic=default_state

Run a rollout of a policy, trained with the command above:

maze-run -cn conf_rollout env.name=CartPole-v1 model=vector_obs \
policy=torch_policy input_dir=outputs/<experiment-dir>

3.26 Tensorboard and Command Line Logging

This page gives a brief overview of the Tensorboard and command line logging facilities of Maze. We will show
examples based on the cutting-2D Maze environment to make things a bit more interesting.

To understand the underlying concepts we recommend to read the sections on event and KPI logging as well as on the
Maze event system.

320 Chapter 3. Documentation Overview

https://www.tensorflow.org/tensorboard

Maze

3.26.1 Tensorboard Logging

To watch the training progress with Tensorboard start it by running:

tensorboard --logdir outputs/

and view it with your browser at http://localhost:6006/.

You will get an output similar to the one shown in the image below.

To keep everything organized and avoid having to browse through tons of pages we group the contained items into
semantically connected sections:

• Since Maze allows you to use different environments for training and evaluation, each logging section has a
train_ or eval_ prefix to show if the corresponding stats were logged as part of the training or the evaluation
environment.

• The BaseEnvEvents sections (i.e., eval_BaseEnvEvents and train_BaseEnvEvents contain general statistics such
as rewards or step counts. This section is always present, independent of the environment used.

• Other sections are specific to the environment used. In the example above, these are the CuttingEvents and the
InventoryEvents.

• In addition, we get one additional section containing stats of the trainer used, called
train_NameOfTrainerEvents. It contains statistics such as policy loss, gradient norm or value loss. This
section is not present for the evaluation environment.

The gallery below shows some additional useful examples and features of the Maze Tensorboard log (click the images
to display them in large).

3.26. Tensorboard and Command Line Logging 321

http://localhost:6006/

Maze

Logging of component specific events
in the SCALARS tab.
(Useful for understanding the environment)

Logging of the training command and the complete
hydra job config in the TEXT tab.
(Useful for reproducing experiments)

Logging of action sampling statistics
in the IMAGE tab.
(Useful for understanding the agent’s behaviour)

Logging of observation distributions
in the DISTRIBUTIONS and HISTOGRAMS tab.
(Useful for analysing observations)

3.26.2 Command Line Logging

Whenever you start a training run you will also get a command line output similar to the one shown below. Analogously
to the Tensorboard log, Maze distinguishes between train and eval outputs and groups the items into semantically
connected output blocks.

step|path |
→˓ value
=====|==|====================

1|train MultiStepActorCritic..time_rollout ······················|
→˓ 1.091

1|train MultiStepActorCritic..learning_rate ······················|
→˓ 0.000

1|train MultiStepActorCritic..policy_loss 0 |
→˓ -0.000

1|train MultiStepActorCritic..policy_grad_norm 0 |
→˓ 0.001

1|train MultiStepActorCritic..policy_entropy 0 |
→˓ 1.593

1|train MultiStepActorCritic..policy_loss 1 |
→˓ -0.000

1|train MultiStepActorCritic..policy_grad_norm 1 |
→˓ 0.008

(continues on next page)

322 Chapter 3. Documentation Overview

Maze

(continued from previous page)

1|train MultiStepActorCritic..policy_entropy 1 |
→˓ 0.295

1|train MultiStepActorCritic..critic_value 0 |
→˓ -0.199

1|train MultiStepActorCritic..critic_value_loss 0 |
→˓ 116.708

1|train MultiStepActorCritic..critic_grad_norm 0 |
→˓ 0.500

1|train MultiStepActorCritic..time_update ······················|
→˓ 1.642

1|train DiscreteActionEvents action substep_0/piece_idx |
→˓[len:4000, :54.8]

1|train BaseEnvEvents reward median_step_count |
→˓ 200.000

1|train BaseEnvEvents reward mean_step_count |
→˓ 200.000

1|train BaseEnvEvents reward total_step_count |
→˓ 4000.000

1|train BaseEnvEvents reward total_episode_count |
→˓ 20.000

1|train BaseEnvEvents reward episode_count |
→˓ 20.000

1|train BaseEnvEvents reward std |
→˓ 1.465

1|train BaseEnvEvents reward mean |
→˓ -71.950

1|train BaseEnvEvents reward min |
→˓ -75.000

1|train BaseEnvEvents reward max |
→˓ -70.000

1|train DiscreteActionEvents action substep_1/order |
→˓[len:4000, :0.5]

1|train DiscreteActionEvents action substep_1/rotation |
→˓[len:4000, :0.5]

1|train InventoryEvents piece_replenished mean_episode_total |
→˓ 71.950

1|train InventoryEvents pieces_in_inventory step_max |
→˓ 163.000

1|train InventoryEvents pieces_in_inventory step_mean |
→˓ 69.946

1|train CuttingEvents valid_cut mean_episode_total |
→˓ 200.000

1|train BaseEnvEvents kpi max/raw_piece_usage_..|
→˓ 0.375

1|train BaseEnvEvents kpi min/raw_piece_usage_..|
→˓ 0.350

1|train BaseEnvEvents kpi std/raw_piece_usage_..|
→˓ 0.007

1|train BaseEnvEvents kpi mean/raw_piece_usage..|
→˓ 0.360
Time required for epoch: 19.43s
Update epoch - 1
step|path |
→˓ value
=====|==|====================

2|eval DiscreteActionEvents action substep_0/piece_idx |
→˓[len:800, :53.2]

(continues on next page)

3.26. Tensorboard and Command Line Logging 323

Maze

(continued from previous page)

2|eval BaseEnvEvents reward median_step_count |
→˓ 200.000

2|eval BaseEnvEvents reward mean_step_count |
→˓ 200.000

2|eval BaseEnvEvents reward total_step_count |
→˓ 1600.000

2|eval BaseEnvEvents reward total_episode_count |
→˓ 8.000

2|eval BaseEnvEvents reward episode_count |
→˓ 4.000

2|eval BaseEnvEvents reward std |
→˓ 1.414

2|eval BaseEnvEvents reward mean |
→˓ -71.000

2|eval BaseEnvEvents reward min |
→˓ -73.000

2|eval BaseEnvEvents reward max |
→˓ -69.000

2|eval DiscreteActionEvents action substep_1/order |
→˓ [len:800, :0.5]

2|eval DiscreteActionEvents action substep_1/rotation |
→˓ [len:800, :0.5]

2|eval InventoryEvents piece_replenished mean_episode_total |
→˓ 71.000

2|eval InventoryEvents pieces_in_inventory step_max |
→˓ 145.000

2|eval InventoryEvents pieces_in_inventory step_mean |
→˓ 68.031

2|eval CuttingEvents valid_cut mean_episode_total |
→˓ 200.000

2|eval BaseEnvEvents kpi max/raw_piece_usage_..|
→˓ 0.365

2|eval BaseEnvEvents kpi min/raw_piece_usage_..|
→˓ 0.345

2|eval BaseEnvEvents kpi std/raw_piece_usage_..|
→˓ 0.007

2|eval BaseEnvEvents kpi mean/raw_piece_usage..|
→˓ 0.355

3.26.3 Where to Go Next

• For further details please see the reference documentation.

• For the bigger picture we refer to event and KPI logging as well as the Maze event system.

• You might be also interested in observation distribution logging and action distribution logging.

324 Chapter 3. Documentation Overview

Maze

3.27 Event and KPI Logging

Monitoring only standard metrics such as reward or episode step count is not always sufficiently informative about the
agent’s behaviour and the problem at hand. To tackle this issue and to enable better inspection and logging tools for
both, agents and environments, we introduce an event and key performance indicator (KPI) logging system. It is based
on the more general event system and allows us to log and monitor environment specific metrics.

The figure below shows a conceptual overview of the logging system. In the remainder of this page we will go through
the components in more detail.

3.27.1 Events

In this section we describe the event logging system from an usage perspective. To understand how this is embedded
in the broader context of a Maze environment we refer to the environments and KPI section of our step by step tutorial
as well as the dedicated section on the underlying event system.

In general, events can be define for any component involved in the RL process (e.g., environments, agents, . . .). They
get fired by the respective component whenever they occur during the agent environment interaction loop. For logging,
events are collected and aggregated via the LogStatsWrapper.

To provide full flexibility Maze allows to customize which statistics are computed at which stage of the aggregation
process via event decorators (step, episode, epoch). The code snipped below contains an example for an event called
invalid_piece_selected borrowed from the cutting 2D tutorial.

class CuttingEvents(ABC):
"""Events related to the cutting process."""

@define_epoch_stats(np.mean, output_name="mean_episode_total")
@define_episode_stats(sum)
@define_step_stats(len)
def invalid_piece_selected(self):

"""An invalid piece is selected for cutting."""

The snippet defines the following statistics aggregation hierarchy:

Step Statistics [@define_step_stats(len)]: in each environment step events 𝑒𝑖 are collected as lists of events
{𝑒𝑖}. The function len associated with the decorator counts how often such an event occurred in the current step
𝑆𝑡𝑎𝑡𝑠𝑆𝑡𝑒𝑝 = |{𝑒𝑖}| (e.g., length of invalid_piece_selected event list).

Episode Statistics [@define_episode_stats(sum)]: defines how the 𝑆 step statistics should be aggregated to
episode statistics (e.g., by simply summing them up: 𝑆𝑡𝑎𝑡𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒 =

∑︀𝑆
𝑆𝑡𝑎𝑡𝑠𝑆𝑡𝑒𝑝)

Epoch Statistics [@define_epoch_stats(np.mean, output_name="mean_episode_total")]: a
training epoch consists of N episodes. This stage defines how these N episode statistics are averaged to epoch statistics

3.27. Event and KPI Logging 325

Maze

(e.g., the mean of the contained episodes: 𝑆𝑡𝑎𝑡𝑠𝐸𝑝𝑜𝑐ℎ = (
∑︀𝑁

𝑆𝑡𝑎𝑡𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒)/𝑁).

The figure below provides a visual summary of the entire event statistics aggregation hierarchy as well as its relation
to KPIs which will be explained in the next section. In Tensorboard and on the command line these events get then
logged in dedicated sections (e.g., as CuttingEvents).

3.27.2 Key Performance Indicators (KPIs)

In applied RL settings the reward is not always the target metric we aim at optimizing from an economical perspective.
Sometimes rewards are heavily shaped to get the agent to learn the right behaviour. This makes it hard to interpret
for humans. For such cases Maze supports computing and logging of additional Key Performance Indicators (KPIs)
along with the reward via the KpiCalculator implemented as a part of the CoreEnv (as reward KPIs are logged
as BaseEnvEvents).

KPIs are in contrast to events computed in an aggregated form at the end of an episode triggered by the reset()
method of the LogStatsWrapper. This is why we can compute them in a normalized fashion (e.g., dived by the
total number of steps in an episode). Conceptually KPIs life on the same level as episode statistics in the logging
hierarchy (see figure above).

For further details on how to implement a concrete KPI calculator we refer to the KPI section of our tutorial.

3.27.3 Plain Python Configuration

When working with the CLI and Hydra configs all components necessary for logging are automatically instantiated
under the hood. In case you would like to test or run your logging setup directly from Python you can start with the
snippet below.

from docs.tutorial_maze_env.part04_events.env.maze_env import maze_env_factory
from maze.utils.log_stats_utils import SimpleStatsLoggingSetup
from maze.core.wrappers.log_stats_wrapper import LogStatsWrapper

init maze environment
env = maze_env_factory(max_pieces_in_inventory=200, raw_piece_size=[100, 100],

static_demand=(30, 15))

wrap environment with logging wrapper
env = LogStatsWrapper(env, logging_prefix="main")

(continues on next page)

326 Chapter 3. Documentation Overview

Maze

(continued from previous page)

register a console writer and connect the writer to the statistics logging system
with SimpleStatsLoggingSetup(env):

reset environment and run interaction loop
obs = env.reset()
for i in range(15):

action = env.action_space.sample()
obs, reward, done, info = env.step(action)

To get access to event and KPI logging we need to wrap the environment with the LogStatsWrapper. To simplify
the statistics logging setup we rely on the SimpleStatsLoggingSetup helper class.

When running the script you will get an output as shown below. Note that statistics of both, events and KPIs, are
printed along with default reward or action statistics.

step|path |
→˓ value
=====|==|====================

1|main DiscreteActionEvents action substep_0/order |
→˓[len:15, :0.5]

1|main DiscreteActionEvents action substep_0/piece_idx |
→˓[len:15, :82.3]

1|main DiscreteActionEvents action substep_0/rotation |
→˓[len:15, :0.7]

1|main BaseEnvEvents reward median_step_count |
→˓ 15.000

1|main BaseEnvEvents reward mean_step_count |
→˓ 15.000

1|main BaseEnvEvents reward total_step_count |
→˓ 15.000

1|main BaseEnvEvents reward total_episode_count |
→˓ 1.000

1|main BaseEnvEvents reward episode_count |
→˓ 1.000

1|main BaseEnvEvents reward std |
→˓ 0.000

1|main BaseEnvEvents reward mean |
→˓ -29.000

1|main BaseEnvEvents reward min |
→˓ -29.000

1|main BaseEnvEvents reward max |
→˓ -29.000

1|main InventoryEvents piece_replenished mean_episode_total |
→˓ 3.000

1|main InventoryEvents pieces_in_inventory step_max |
→˓ 200.000

1|main InventoryEvents pieces_in_inventory step_mean |
→˓ 200.000

1|main CuttingEvents invalid_cut mean_episode_total |
→˓ 14.000

1|main InventoryEvents piece_discarded mean_episode_total |
→˓ 2.000

1|main CuttingEvents valid_cut mean_episode_total |
→˓ 1.000

1|main BaseEnvEvents kpi max/raw_piece_usage_..|
→˓ 0.000

1|main BaseEnvEvents kpi min/raw_piece_usage_..|
→˓ 0.000 (continues on next page)

3.27. Event and KPI Logging 327

Maze

(continued from previous page)

1|main BaseEnvEvents kpi std/raw_piece_usage_..|
→˓ 0.000

1|main BaseEnvEvents kpi mean/raw_piece_usage..|
→˓ 0.000

3.27.4 Where to Go Next

• You can learn more about the general event system.

• For a more implementation oriented summary you can visit the events and KPI section of our tutorial.

• To see another application of the event system you can read up on reward customization and shaping.

3.28 Action Distribution Visualization

There are situations where it turns out to be extremely useful to watch the evolution of an agent’s sampling behaviour
throughout the training process. Looking at the action sampling distribution often provides a first intuition about the
agent’s behaviour without the need to look at individual rollouts.

However, most importantly it is a great debugging tool immediately revealing if:

• the weights of the policy collapsed during training (e.g., the agent starts sampling always the same actions even
though this does not make sense for the environment at hand).

• observations are properly normalized and the weights of the policy are initialized accordingly to result in a
healthy initial sampling behaviour of the untrained model (e.g., each discrete action is taken a similar number
of times when starting training).

• biasing the weights of the policy output layer results in the expected sampling behaviour (e.g., initially sampling
an action twice as often as the remaining ones).

• the agents actually starts learning (i.e., the sampling distributions changes throughout the training epochs).

Maze visualizes action sampling distributions on a per-epoch basis in the IMAGES tab of Tensorboard. By using the
slider above the images you can step through the training epochs and see how the sampling distribution evolves over
time.

3.28.1 Discrete and Multi Binary Actions

Each action space has a dedicated visualization assigned. Discrete and multi-binary action spaces are visualized via
histograms. The example below shows an action sampling distribution for the discrete version of LunarLander-v2.
The indices on the x-axis correspond to the available actions:

• Action 𝑎0 - do nothing

• Action 𝑎1 - fire left orientation engine

• Action 𝑎2 - fire main engine

• Action 𝑎3 - fire right orientation engine

328 Chapter 3. Documentation Overview

https://gym.openai.com/envs/LunarLander-v2/

Maze

We can see that action 𝑎2 (fire main engine) is taken most often, which is reasonable for this environment.

3.28.2 Continuous Actions

Continuous actions (Box spaces) are visualized via violin plots. The example below shows an action sampling distri-
bution for LunarLanderContinuous-v2. The indices on the x-axis correspond to the available actions:

• Action 𝑎1 - controls the main engine:

– 𝑎1 ∈ [−1, 0]: off

– 𝑎1 ∈ (0, 1] throttle from 50% to 100% power (can’t work with less than 50%).

• Action 𝑎2 - controls the orientation engines:

– 𝑎2 ∈ [−1.0,−0.5]: fire left engine

– 𝑎2 ∈ [0.5, 1.0]: fire right engine

– 𝑎2 ∈ (−0.5, 0.5): off

3.28. Action Distribution Visualization 329

https://gym.openai.com/envs/LunarLanderContinuous-v2/

Maze

For the first action, corresponding to the main engine, values closer to 1.0 are sampled more often which is similar to
the discrete case above.

3.28.3 Where to Go Next

• You might be also interested in logging observation distributions.

3.29 Observation Distribution Visualization

Maze provides the option to watch the evolution of value ranges of observations throughout the training process. This
is especially useful for debugging your experiments and training runs as it reveals if:

• observations stay within an expected value range.

• observation normalization is applied correctly.

• observations drift as the agent’s behaviour evolves throughout training.

3.29.1 Activating Observation Logging

To activate observation logging you only have to add the ObservationLoggingWrapper to your environment
wrapper stack in your yaml config:

@package wrappers
ObservationLoggingWrapper: {}

If you are using plain Python you can start with the code snippet below.

from maze.core.wrappers.maze_gym_env_wrapper import GymMazeEnv
from maze.core.wrappers.observation_logging_wrapper import ObservationLoggingWrapper

(continues on next page)

330 Chapter 3. Documentation Overview

Maze

(continued from previous page)

env = GymMazeEnv(env="CartPole-v0")
env = ObservationLoggingWrapper(env)

For both cases observations will be logged and distribution plots will be added to Tensorboard.

Warning: We support observation logging as an opt-in feature via a dedicated wrapper and recommend to use
it only for debugging and inspection purposes. Once everything is on track and training works as expected we
suggest to remove the wrapper again especially when dealing with environments with large observations. If you
forget to remove it training might get slow and the memory consumption of Tensorboard might explode!

3.29.2 Tensorboard Examples

Maze visualizes observations on a per-epoch basis in the DISTRIBUTIONS and HISTOGRAMS tab of Tensorboard.
By using the slider above the images you can step through the training epochs and see how the observation distribution
evolves over time.

Below you see an example for both versions (just click the figure to view it in large).

Note that two different versions of the observation distribution are logged:

• observation_original: distribution of the original observation returned by the environment.

• observation_processed: distribution of the observation after processing (e.g. pre-processing or normalization).

This is especially useful to verify if the applied observation processing steps yield the expected result.

3.29. Observation Distribution Visualization 331

Maze

3.29.3 Where to Go Next

• You might be also interested in logging action distributions.

• You can learn more about observation pre-processing and observation normalization.

3.30 Runner Concept

In Maze, Runners are the entity responsible for launching and administering any job you start from a command line
(like training or rollouts). They interpret the configuration and make sure the appropriate elements (models, trainers,
etc.) are created, configured, and launched.

For a more detailed description of the runner concept, see Hydra overview. If you need to write custom runners for
your project, see the documentation for custom configuration.

332 Chapter 3. Documentation Overview

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

333

Maze

334 Chapter 4. Indices and tables

INDEX

A
A2CAlgorithmConfig (class in

maze.train.trainers.a2c.a2c_algorithm_config),
173

action() (maze.core.log_events.action_events.ContinuousActionEvents
method), 80

action() (maze.core.log_events.action_events.DiscreteActionEvents
method), 79

action() (maze.core.wrappers.dict_action_wrapper.DictActionWrapper
method), 58

action() (maze.core.wrappers.discretize_actions_wrapper.DiscretizeActionsWrapper
method), 60

action() (maze.core.wrappers.no_dict_action_wrapper.NoDictActionWrapper
method), 58

action() (maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper
method), 56

action() (maze.core.wrappers.split_actions_wrapper.SplitActionsWrapper
method), 59

action() (maze.core.wrappers.wrapper.ActionWrapper
method), 52

action_conversion()
(maze.core.env.maze_env.MazeEnv property),
43

action_conversion_dict
(maze.core.env.maze_env.MazeEnv attribute),
44

action_head_distribution()
(maze.distributions.distribution_mapper.DistributionMapper
method), 157

action_space() (maze.core.env.maze_env.MazeEnv
property), 44

action_space() (maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin
property), 43

action_space() (maze.core.wrappers.discretize_actions_wrapper.DiscretizeActionsWrapper
property), 60

action_space() (maze.core.wrappers.no_dict_action_wrapper.NoDictActionWrapper
property), 58

action_space() (maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper
property), 56

action_space() (maze.core.wrappers.sorted_spaces_wrapper.SortedSpacesWrapper
property), 55

action_space() (maze.core.wrappers.split_actions_wrapper.SplitActionsWrapper

property), 59
action_space() (maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv

property), 205
action_spaces_dict

(maze.train.trainers.imitation.bc_loss.BCLoss
attribute), 201

action_spaces_dict()
(maze.core.env.maze_env.MazeEnv property),
44

action_spaces_dict()
(maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin
property), 43

action_spaces_dict()
(maze.core.wrappers.discretize_actions_wrapper.DiscretizeActionsWrapper
property), 60

action_spaces_dict()
(maze.core.wrappers.no_dict_action_wrapper.NoDictActionWrapper
property), 58

action_spaces_dict()
(maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper
property), 56

action_spaces_dict()
(maze.core.wrappers.split_actions_wrapper.SplitActionsWrapper
property), 59

action_spaces_dict()
(maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv
property), 205

ActionCandidates (class in
maze.core.agent_integration.maze_action_candidates),
121

ActionConversionCandidatesInterface
(class in maze.core.agent_integration.maze_action_candidates),
121

ActionConversionInterface (class in
maze.core.env.action_conversion), 48

ActionMaskingBlock (class in
maze.perception.blocks.general.action_masking),
135

ActionWrapper (class in
maze.core.wrappers.wrapper), 52

actor_id() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 122

335

Maze

actor_id() (maze.core.env.core_env.CoreEnv
method), 42

actor_id() (maze.core.env.maze_env.MazeEnv
method), 44

actor_id() (maze.core.env.structured_env.StructuredEnv
method), 42

actor_id() (maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv
method), 70

actor_id() (maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv
method), 205

ActorAgent (class in
maze.train.parallelization.distributed_actors.actor),
206

actors_batch_size
(maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 179

Adam (class in maze.train.trainers.es.optimizers.adam),
193

add_event() (maze.core.log_stats.log_stats.LogStatsAggregator
method), 83

add_value() (maze.core.log_stats.log_stats.LogStatsAggregator
method), 83

AgentExecution (class in
maze.core.agent_integration.agent_execution),
118

AgentIntegration (class in
maze.core.agent_integration.agent_integration),
119

aggregate() (maze.train.parallelization.observation_aggregator.ObservationAggregator
method), 203

AGGREGATION_FUNCS
(maze.core.rendering.events_stats_renderer.EventStatsRenderer
attribute), 91

AlgorithmConfig (class in
maze.train.trainers.common.training_runner),
168

append() (maze.core.events.event_collection.EventCollection
method), 75

append() (maze.core.log_events.step_event_log.StepEventLog
method), 77

arg_to_collection()
(maze.core.utils.registry.Registry method),
164

arg_to_obj() (maze.core.utils.registry.Registry
method), 164

arguments() (maze.core.rendering.renderer.Renderer
static method), 90

atanh (class in maze.distributions.utils), 157

B
BaseDistributedActors (class in

maze.train.parallelization.distributed_actors.distributed_actors),
207

BaseDistributedEnv (class in

maze.train.parallelization.distributed_env.distributed_env),
204

BaseEnv (class in maze.core.env.base_env), 41
BaseModelBuilder (class in

maze.perception.builders.base), 138
BaseModelComposer (class in

maze.perception.models.model_composer),
140

BasePolicyComposer (class in
maze.perception.models.policies.base_policy_composer),
145

BaseStateActionCriticComposer (class in
maze.perception.models.critics.base_state_action_critic_composer),
149

BaseStateCriticComposer (class in
maze.perception.models.critics.base_state_critic_composer),
147

BaseWorker (class in
maze.train.parallelization.base_worker),
203

BaseWorkerOutput (class in
maze.train.parallelization.base_worker),
203

batch_outputs_time_major (class in
maze.train.trainers.impala.impala_batching),
183

batch_size (maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig
attribute), 199

batch_size (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 175

BCAlgorithmConfig (class in
maze.train.trainers.imitation.bc_algorithm_config),
199

BCEvaluator (class in
maze.train.trainers.imitation.bc_evaluator),
200

BCLoss (class in maze.train.trainers.imitation.bc_loss),
201

BCTrainer (class in
maze.train.trainers.imitation.bc_trainer),
198

BernoulliProbabilityDistribution (class in
maze.distributions.bernoulli), 158

BestModelSelection (class in
maze.train.trainers.common.model_selection.best_model_selection),
168

BetaProbabilityDistribution (class in
maze.distributions.beta), 160

bootstrap_returns()
(maze.core.agent.torch_state_critic.TorchStateCritic
method), 110

box_mean_abs_deviation()
(maze.train.trainers.imitation.imitation_events.ImitationEvents
method), 195

336 Index

Maze

broadcast_updated_policy()
(maze.train.parallelization.distributed_actors.distributed_actors.BaseDistributedActors
method), 207

build() (maze.core.rendering.notebook_event_logs_viewer.NotebookEventLogsViewer
method), 93

build() (maze.core.rendering.notebook_trajectory_viewer.NotebookTrajectoryViewer
method), 93

build_layer_dict()
(maze.perception.blocks.feed_forward.dense.DenseBlock
method), 126

build_layer_dict()
(maze.perception.blocks.feed_forward.graph_attention.GraphAttentionBlock
method), 129

build_layer_dict()
(maze.perception.blocks.feed_forward.graph_conv.GraphConvBlock
method), 128

build_layer_dict()
(maze.perception.blocks.feed_forward.strided_conv.StridedConvolutionBlock
method), 128

build_layer_dict()
(maze.perception.blocks.feed_forward.vgg_conv.VGGConvolutionBlock
method), 127

build_obj() (maze.core.utils.registry.Registry class
method), 164

C
calculate_kpis() (maze.core.log_events.kpi_calculator.KpiCalculator

method), 77
calculate_loss() (maze.train.trainers.imitation.bc_loss.BCLoss

method), 201
callable_from_path()

(maze.core.utils.registry.Registry class
method), 165

CategoricalProbabilityDistribution (class
in maze.distributions.categorical), 158

check_model_config()
(maze.perception.models.custom_model_composer.CustomModelComposer
class method), 144

check_model_config()
(maze.perception.models.model_composer.BaseModelComposer
class method), 140

check_model_config()
(maze.perception.models.template_model_composer.TemplateModelComposer
class method), 142

class_type_from_module_name()
(maze.core.utils.registry.Registry method),
165

clear_abort() (maze.train.trainers.es.distributed.es_rollout_wrapper.ESRolloutWorkerWrapper
method), 194

clip_range (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

clone_from() (maze.core.env.simulated_env_mixin.SimulatedEnvMixin
method), 47

clone_from() (maze.core.wrappers.maze_gym_env_wrapper.GymMazeEnv
method), 70

close() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 122

close() (maze.core.env.base_env.BaseEnv method), 41
close() (maze.core.env.core_env.CoreEnv method), 42
close() (maze.core.env.maze_env.MazeEnv method),

44
close() (maze.core.rendering.events_stats_renderer.EventStatsRenderer

method), 91
close() (maze.core.wrappers.log_stats_wrapper.LogStatsWrapper

method), 53
close() (maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv

method), 70
close() (maze.core.wrappers.time_limit_wrapper.TimeLimitWrapper

method), 54
close() (maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv

method), 205
collect_modules()

(maze.core.utils.registry.Registry method),
165

collect_outputs()
(maze.train.parallelization.distributed_actors.distributed_actors.BaseDistributedActors
method), 207

compute_action() (maze.core.agent.default_policy.DefaultPolicy
method), 107

compute_action() (maze.core.agent.dummy_cartpole_policy.DummyCartPolePolicy
method), 108

compute_action() (maze.core.agent.flat_policy.FlatPolicy
method), 104

compute_action() (maze.core.agent.policy.Policy
method), 104

compute_action() (maze.core.agent.random_policy.RandomPolicy
method), 107

compute_action() (maze.core.agent.torch_policy.TorchPolicy
method), 105

compute_action_distribution()
(maze.core.agent.torch_policy.TorchPolicy
method), 105

compute_action_logits_entropy_dist()
(maze.core.agent.torch_policy.TorchPolicy
method), 105

compute_action_with_logits()
(maze.core.agent.torch_policy.TorchPolicy
method), 106

compute_gradient_norm (class in
maze.train.utils.train_utils), 202

compute_logits_dict()
(maze.core.agent.torch_policy.TorchPolicy
method), 106

compute_return() (maze.core.agent.torch_state_critic.TorchStateCritic
method), 110

compute_sigmoid_bias (class in
maze.perception.weight_init), 155

Index 337

Maze

compute_state_action_value_step()
(maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 113

compute_state_action_values_step()
(maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 113

compute_top_action_candidates()
(maze.core.agent.default_policy.DefaultPolicy
method), 107

compute_top_action_candidates()
(maze.core.agent.dummy_cartpole_policy.DummyCartPolePolicy
method), 108

compute_top_action_candidates()
(maze.core.agent.flat_policy.FlatPolicy
method), 104

compute_top_action_candidates()
(maze.core.agent.policy.Policy method),
104

compute_top_action_candidates()
(maze.core.agent.random_policy.RandomPolicy
method), 108

compute_top_action_candidates()
(maze.core.agent.torch_policy.TorchPolicy
method), 106

ConcatenationBlock (class in
maze.perception.blocks.general.concat),
131

ConcatModelBuilder (class in
maze.perception.builders.concat), 139

ContinuousActionEvents (class in
maze.core.log_events.action_events), 80

convert_to_numpy (class in
maze.perception.perception_utils), 154

convert_to_torch (class in
maze.perception.perception_utils), 153

core_env (maze.core.env.maze_env.MazeEnv at-
tribute), 44

CoreEnv (class in maze.core.env.core_env), 42
CorrelationBlock (class in

maze.perception.blocks.general.correlation),
131

create_categorical_plot (class in
maze.core.log_events.log_create_figure_functions),
80

create_distributed_rollouts()
(maze.train.trainers.es.es_runners.ESDevRunner
method), 191

create_distributed_rollouts()
(maze.train.trainers.es.es_runners.ESMasterRunner
method), 191

create_event_topic()
(maze.core.events.event_service.EventService
method), 75

create_event_topic()

(maze.core.events.pubsub.Pubsub method),
73

create_event_topic()
(maze.core.log_stats.log_stats.LogStatsAggregator
method), 84

create_histogram (class in
maze.core.log_events.log_create_figure_functions),
80

create_relative_bar_plot (class in
maze.core.log_events.log_create_figure_functions),
80

create_violin_distribution (class in
maze.core.log_events.log_create_figure_functions),
80

create_widget() (maze.core.rendering.renderer_args.IntRangeArg
method), 95

create_widget() (maze.core.rendering.renderer_args.OptionsArrayArg
method), 95

create_widget() (maze.core.rendering.renderer_args.RendererArg
method), 94

critic() (maze.perception.models.critics.base_state_action_critic_composer.BaseStateActionCriticComposer
property), 150

critic() (maze.perception.models.critics.base_state_critic_composer.BaseStateCriticComposer
property), 147

critic() (maze.perception.models.critics.delta_state_critic_composer.DeltaStateCriticComposer
property), 149

critic() (maze.perception.models.critics.shared_state_action_critics_composer.SharedStateActionCriticComposer
property), 150

critic() (maze.perception.models.critics.shared_state_critic_composer.SharedStateCriticComposer
property), 147

critic() (maze.perception.models.critics.step_state_action_critic_composer.StepStateActionCriticComposer
property), 151

critic() (maze.perception.models.critics.step_state_critic_composer.StepStateCriticComposer
property), 148

critic() (maze.perception.models.custom_model_composer.CustomModelComposer
property), 144

critic() (maze.perception.models.model_composer.BaseModelComposer
property), 140

critic() (maze.perception.models.template_model_composer.TemplateModelComposer
property), 142

critic_burn_in_epochs
(maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 173

critic_burn_in_epochs
(maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

critic_grad_norm()
(maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

critic_grad_norm()
(maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 181

critic_value() (maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

338 Index

Maze

critic_value() (maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 181

critic_value_loss()
(maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

critic_value_loss()
(maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 181

CustomModelComposer (class in
maze.perception.models.custom_model_composer),
143

D
data_loader (maze.train.trainers.imitation.bc_trainer.BCTrainer

attribute), 198
DataLoadWorker (class in

maze.train.trainers.imitation.parallel_loaded_im_data_set),
197

dataset (maze.train.trainers.imitation.imitation_runners.ImitationRunner
attribute), 196

DefaultPolicy (class in
maze.core.agent.default_policy), 107

define_episode_stats (class in
maze.core.log_stats.event_decorators), 87

define_epoch_stats (class in
maze.core.log_stats.event_decorators), 88

define_plot (class in
maze.core.log_stats.event_decorators), 89

define_stats_grouping (class in
maze.core.log_stats.event_decorators), 88

define_step_stats (class in
maze.core.log_stats.event_decorators), 86

DeltaStateCriticComposer (class in
maze.perception.models.critics.delta_state_critic_composer),
149

DenseBlock (class in
maze.perception.blocks.feed_forward.dense),
126

deterministic_eval
(maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 173

deterministic_eval
(maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

deterministic_eval
(maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

deterministic_sample()
(maze.distributions.bernoulli.BernoulliProbabilityDistribution
method), 158

deterministic_sample()
(maze.distributions.beta.BetaProbabilityDistribution
method), 160

deterministic_sample()

(maze.distributions.categorical.CategoricalProbabilityDistribution
method), 158

deterministic_sample()
(maze.distributions.dict.DictProbabilityDistribution
method), 161

deterministic_sample()
(maze.distributions.distribution.ProbabilityDistribution
method), 155

deterministic_sample()
(maze.distributions.gaussian.DiagonalGaussianProbabilityDistribution
method), 159

deterministic_sample()
(maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution
method), 160

deterministic_sample()
(maze.distributions.squashed_gaussian.SquashedGaussianProbabilityDistribution
method), 159

device (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 173

device (maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig
attribute), 200

device (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

device (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

device() (maze.core.agent.torch_actor_critic.TorchActorCritic
property), 117

device() (maze.core.agent.torch_model.TorchModel
property), 117

device() (maze.core.agent.torch_state_action_critic.TorchStateActionCritic
property), 113

device() (maze.core.agent.torch_state_critic.TorchStateCritic
property), 110

DiagonalGaussianProbabilityDistribution
(class in maze.distributions.gaussian), 159

DictActionWrapper (class in
maze.core.wrappers.dict_action_wrapper),
58

DictObservationWrapper (class in
maze.core.wrappers.dict_observation_wrapper),
57

DictProbabilityDistribution (class in
maze.distributions.dict), 161

discrete_accuracy()
(maze.train.trainers.imitation.imitation_events.ImitationEvents
method), 195

DiscreteActionEvents (class in
maze.core.log_events.action_events), 79

DiscretizeActionsWrapper (class in
maze.core.wrappers.discretize_actions_wrapper),
59

distribution_mapper()
(maze.perception.models.model_composer.BaseModelComposer
property), 140

Index 339

Maze

DistributionMapper (class in
maze.distributions.distribution_mapper),
156

DummyCartPolePolicy (class in
maze.core.agent.dummy_cartpole_policy),
108

DummyStructuredDistributedEnv (class in
maze.train.parallelization.distributed_env.dummy_distributed_env),
205

dump_statistics()
(maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper
method), 65

E
entropy() (maze.distributions.bernoulli.BernoulliProbabilityDistribution

method), 158
entropy() (maze.distributions.beta.BetaProbabilityDistribution

method), 160
entropy() (maze.distributions.dict.DictProbabilityDistribution

method), 161
entropy() (maze.distributions.distribution.ProbabilityDistribution

method), 155
entropy() (maze.distributions.gaussian.DiagonalGaussianProbabilityDistribution

method), 159
entropy() (maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution

method), 160
entropy() (maze.distributions.squashed_gaussian.SquashedGaussianProbabilityDistribution

method), 159
entropy() (maze.distributions.torch_dist.TorchProbabilityDistribution

method), 156
entropy_coef (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig

attribute), 173
entropy_coef (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig

attribute), 180
entropy_coef (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig

attribute), 176
env_time() (maze.core.trajectory_recorder.step_record.StepRecord

property), 96
EnvFactory (class in maze.core.utils.config_utils), 163
EnvironmentContext (class in

maze.core.env.environment_context), 49
EPISODE (maze.core.log_stats.log_stats.LogStatsLevel

attribute), 83
episode_id() (maze.core.env.environment_context.EnvironmentContext

property), 49
EpisodeEventLog (class in

maze.core.log_events.episode_event_log),
77

EpisodeRecord (class in
maze.core.trajectory_recorder.episode_record),
96

EpisodeRecorder (class in
maze.core.rollout.parallel_rollout_runner),
102

EpisodeStatsReport (class in
maze.core.rollout.parallel_rollout_runner),
103

EPOCH (maze.core.log_stats.log_stats.LogStatsLevel at-
tribute), 83

epoch_length (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 173

epoch_length (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

epoch_length (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

ESAbortException (class in
maze.train.trainers.es.distributed.es_rollout_wrapper),
194

ESAlgorithmConfig (class in
maze.train.trainers.es.es_algorithm_config),
190

ESDevRunner (class in
maze.train.trainers.es.es_runners), 191

ESDistributedRollouts (class in
maze.train.trainers.es.distributed.es_distributed_rollouts),
193

ESDummyDistributedRollouts (class in
maze.train.trainers.es.distributed.es_dummy_distributed_rollouts),
193

ESEvents (class in maze.train.trainers.es.es_events),
190

ESMasterRunner (class in
maze.train.trainers.es.es_runners), 191

ESRolloutResult (class in
maze.train.trainers.es.distributed.es_distributed_rollouts),
193

ESRolloutWorkerWrapper (class in
maze.train.trainers.es.distributed.es_rollout_wrapper),
194

estimate_observation_normalization_statistics
(class in maze.core.wrappers.observation_normalization.observation_normalization_utils),
68

estimate_statistics()
(maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper
method), 65

estimate_stats() (maze.core.wrappers.observation_normalization.normalization_strategies.base.ObservationNormalizationStrategy
method), 66

estimate_stats() (maze.core.wrappers.observation_normalization.normalization_strategies.mean_zero_std_one.MeanZeroStdOneObservationNormalizationStrategy
method), 69

estimate_stats() (maze.core.wrappers.observation_normalization.normalization_strategies.range_zero_one.RangeZeroOneObservationNormalizationStrategy
method), 69

estimated_queue_sizes()
(maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 181

ESTrainer (class in maze.train.trainers.es.es_trainer),
189

eval() (maze.core.agent.torch_actor_critic.TorchActorCritic
method), 117

340 Index

Maze

eval() (maze.core.agent.torch_model.TorchModel
method), 117

eval() (maze.core.agent.torch_policy.TorchPolicy
method), 106

eval() (maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

eval() (maze.core.agent.torch_state_critic.TorchStateCritic
method), 110

eval_concurrency (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

eval_every_k_iterations
(maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig
attribute), 200

eval_repeats (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 173

eval_repeats (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

eval_repeats (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

evaluate() (maze.train.trainers.common.actor_critic.actor_critic_trainer.MultiStepActorCritic
method), 170

evaluate() (maze.train.trainers.imitation.bc_evaluator.BCEvaluator
method), 200

evaluate() (maze.train.trainers.imitation.imitation_evaluator.ImitationEvaluator
method), 196

evaluate() (maze.train.trainers.impala.impala_learner.ImpalaLearner
method), 182

evaluate() (maze.train.trainers.impala.impala_trainer.MultiStepIMPALA
method), 177

event() (maze.core.log_stats.log_stats.LogStatsKey
property), 89

event_log() (maze.core.rollout.parallel_rollout_runner.EpisodeStatsReport
property), 103

event_topic_factory (class in
maze.core.events.event_topic_factory), 74

EventCollection (class in
maze.core.events.event_collection), 75

EventEnvMixin (class in
maze.core.env.event_env_mixin), 46

EventRecord (class in
maze.core.events.event_record), 76

EventRow (class in maze.core.log_events.log_events_writer_tsv),
79

EventScope (class in maze.core.events.event_service),
74

EventService (class in
maze.core.events.event_service), 75

EventService.TopicInfo (class in
maze.core.events.event_service), 75

EventStatsRenderer (class in
maze.core.rendering.events_stats_renderer), 91

exception() (maze.core.rollout.parallel_rollout_runner.ExceptionReport
property), 103

ExceptionReport (class in

maze.core.rollout.parallel_rollout_runner),
103

extend() (maze.core.events.event_collection.EventCollection
method), 75

extend() (maze.core.log_events.step_event_log.StepEventLog
method), 77

ExternalCoreEnv (class in
maze.core.agent_integration.external_core_env),
122

ExternalCoreEnvRewardAggregator (class in
maze.core.agent_integration.external_core_env),
122

F
finish_rollout() (maze.core.agent_integration.agent_integration.AgentIntegration

method), 120
flat_structured_observations (class in

maze.perception.perception_utils), 153
flat_structured_shapes (class in

maze.core.utils.structured_env_utils), 163
flat_structured_space (class in

maze.core.utils.structured_env_utils), 163
FlatPolicy (class in maze.core.agent.flat_policy), 104
FlattenBlock (class in

maze.perception.blocks.general.flatten), 130
FlattenConcatBaseNet (class in

maze.perception.models.built_in.flatten_concat),
152

FlattenConcatPolicyNet (class in
maze.perception.models.built_in.flatten_concat),
152

FlattenConcatStateValueNet (class in
maze.perception.models.built_in.flatten_concat),
152

FlattenDenseBlock (class in
maze.perception.blocks.joint_blocks.flatten_dense),
136

FlattenPreProcessor (class in
maze.core.wrappers.observation_preprocessing.preprocessors.flatten),
62

forward() (maze.perception.blocks.base.PerceptionBlock
method), 124

forward() (maze.perception.blocks.general.action_masking.ActionMaskingBlock
method), 135

forward() (maze.perception.blocks.general.concat.ConcatenationBlock
method), 131

forward() (maze.perception.blocks.general.correlation.CorrelationBlock
method), 131

forward() (maze.perception.blocks.general.flatten.FlattenBlock
method), 130

forward() (maze.perception.blocks.general.functional.FunctionalBlock
method), 132

forward() (maze.perception.blocks.general.masked_global_pooling.MaskedGlobalPoolingBlock
method), 132

Index 341

Maze

forward() (maze.perception.blocks.general.multi_index_slicing.MultiIndexSlicingBlock
method), 133

forward() (maze.perception.blocks.general.repeat_to_match.RepeatToMatchBlock
method), 133

forward() (maze.perception.blocks.general.self_attention_conv.SelfAttentionConvBlock
method), 134

forward() (maze.perception.blocks.general.self_attention_seq.SelfAttentionSeqBlock
method), 135

forward() (maze.perception.blocks.general.slice.SliceBlock
method), 135

forward() (maze.perception.blocks.inference.InferenceBlock
method), 125

forward() (maze.perception.blocks.joint_blocks.flatten_dense.FlattenDenseBlock
method), 136

forward() (maze.perception.blocks.joint_blocks.lstm_last_step.LSTMLastStepBlock
method), 138

forward() (maze.perception.blocks.joint_blocks.strided_conv_dense.StridedConvolutionDenseBlock
method), 138

forward() (maze.perception.blocks.joint_blocks.vgg_conv_dense.VGGConvolutionDenseBlock
method), 137

forward() (maze.perception.blocks.joint_blocks.vgg_conv_gap.VGGConvolutionGAPBlock
method), 137

forward() (maze.perception.blocks.shape_normalization.ShapeNormalizationBlock
method), 125

forward() (maze.perception.models.built_in.flatten_concat.FlattenConcatPolicyNet
method), 152

forward() (maze.perception.models.built_in.flatten_concat.FlattenConcatStateValueNet
method), 152

from_importance_weights (class in
maze.train.trainers.impala.impala_vtrace),
187

from_logits (class in
maze.train.trainers.impala.impala_vtrace),
185

from_observation_space()
(maze.perception.builders.base.BaseModelBuilder
method), 139

from_observation_space()
(maze.perception.builders.concat.ConcatModelBuilder
method), 139

FunctionalBlock (class in
maze.perception.blocks.general.functional),
131

G
gae_lambda (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig

attribute), 174
gae_lambda (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig

attribute), 176
gamma (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig

attribute), 174
gamma (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig

attribute), 180

gamma (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

generate_evaluation()
(maze.train.trainers.es.distributed.es_rollout_wrapper.ESRolloutWorkerWrapper
method), 194

generate_rollouts()
(maze.train.trainers.es.distributed.es_distributed_rollouts.ESDistributedRollouts
method), 193

generate_rollouts()
(maze.train.trainers.es.distributed.es_dummy_distributed_rollouts.ESDummyDistributedRollouts
method), 193

generate_training()
(maze.train.trainers.es.distributed.es_rollout_wrapper.ESRolloutWorkerWrapper
method), 194

get() (maze.train.trainers.es.es_shared_noise_table.SharedNoiseTable
method), 192

get_dict_dict_obj_attr_names()
(maze.train.parallelization.base_worker.BaseWorkerOutput
static method), 204

get_env_time() (maze.core.env.maze_env.MazeEnv
method), 44

get_env_time() (maze.core.env.time_env_mixin.TimeEnvMixin
method), 46

get_episode_id() (maze.core.env.maze_env.MazeEnv
method), 44

get_episode_id() (maze.core.env.recordable_env_mixin.RecordableEnvMixin
method), 45

get_epoch_stats_aggregator()
(maze.train.parallelization.distributed_actors.distributed_actors.BaseDistributedActors
method), 207

get_flat_parameters (class in
maze.train.trainers.es.es_utils), 194

get_interfaces() (maze.core.agent_integration.external_core_env.ExternalCoreEnvRewardAggregator
method), 122

get_interfaces() (maze.core.events.pubsub.Subscriber
method), 73

get_interfaces() (maze.core.wrappers.maze_gym_env_wrapper.GymRewardAggregator
method), 71

get_kpi_calculator()
(maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

get_kpi_calculator()
(maze.core.env.core_env.CoreEnv method),
42

get_kpi_calculator()
(maze.core.env.event_env_mixin.EventEnvMixin
method), 46

get_kpi_calculator()
(maze.core.env.maze_env.MazeEnv method), 44

get_last_episode_data()
(maze.core.rollout.parallel_rollout_runner.EpisodeRecorder
method), 102

get_list_obj_attr_names()
(maze.train.parallelization.base_worker.BaseWorkerOutput

342 Index

Maze

static method), 204
get_log_rhos (class in

maze.train.trainers.impala.impala_vtrace),
188

get_maze_action()
(maze.core.agent_integration.agent_integration.AgentIntegration
method), 120

get_maze_action()
(maze.core.env.maze_env.MazeEnv method), 44

get_maze_action()
(maze.core.env.recordable_env_mixin.RecordableEnvMixin
method), 45

get_maze_state() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

get_maze_state() (maze.core.env.core_env.CoreEnv
method), 42

get_maze_state() (maze.core.env.maze_env.MazeEnv
method), 44

get_maze_state() (maze.core.env.recordable_env_mixin.RecordableEnvMixin
method), 46

get_maze_state() (maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv
method), 70

get_num_of_parameters()
(maze.perception.blocks.base.PerceptionBlock
method), 124

get_observation_and_action_dicts()
(maze.core.env.maze_env.MazeEnv method), 44

get_observation_and_action_dicts()
(maze.core.wrappers.log_stats_wrapper.LogStatsWrapper
method), 53

get_observation_and_action_dicts()
(maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper
method), 56

get_observation_and_action_dicts()
(maze.core.wrappers.observation_logging_wrapper.ObservationLoggingWrapper
method), 54

get_observation_and_action_dicts()
(maze.core.wrappers.observation_stack_wrapper.ObservationStackWrapper
method), 57

get_observation_and_action_dicts()
(maze.core.wrappers.random_reset_wrapper.RandomResetWrapper
method), 55

get_observation_and_action_dicts()
(maze.core.wrappers.sorted_spaces_wrapper.SortedSpacesWrapper
method), 55

get_observation_and_action_dicts()
(maze.core.wrappers.time_limit_wrapper.TimeLimitWrapper
method), 54

get_observation_and_action_dicts()
(maze.core.wrappers.wrapper.ActionWrapper
method), 52

get_observation_and_action_dicts()
(maze.core.wrappers.wrapper.ObservationWrapper
method), 51

get_observation_and_action_dicts()
(maze.core.wrappers.wrapper.RewardWrapper
method), 52

get_observation_and_action_dicts()
(maze.core.wrappers.wrapper.Wrapper
method), 50

get_renderer() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

get_renderer() (maze.core.env.core_env.CoreEnv
method), 42

get_renderer() (maze.core.env.maze_env.MazeEnv
method), 44

get_renderer() (maze.core.env.recordable_env_mixin.RecordableEnvMixin
method), 46

get_renderer() (maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv
method), 71

get_serializable_components()
(maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

get_serializable_components()
(maze.core.env.core_env.CoreEnv method),
42

get_serializable_components()
(maze.core.env.serializable_env_mixin.SerializableEnvMixin
method), 46

get_serializable_components()
(maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv
method), 71

get_statistics() (maze.core.wrappers.observation_normalization.normalization_strategies.base.ObservationNormalizationStrategy
method), 66

get_statistics() (maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper
method), 65

get_stats() (maze.core.log_stats.log_stats_env.LogStatsEnv
method), 81

get_stats() (maze.core.wrappers.log_stats_wrapper.LogStatsWrapper
method), 53

get_stats() (maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv
method), 205

get_stats_logger (class in
maze.core.log_stats.log_stats), 86

get_stats_value()
(maze.core.log_stats.log_stats_env.LogStatsEnv
method), 82

get_stats_value()
(maze.core.wrappers.log_stats_wrapper.LogStatsWrapper
method), 53

get_stats_value()
(maze.train.parallelization.distributed_actors.distributed_actors.BaseDistributedActors
method), 207

get_stats_value()
(maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv
method), 205

get_step_events()
(maze.core.agent_integration.external_core_env.ExternalCoreEnv

Index 343

Maze

method), 123
get_step_events()

(maze.core.env.core_env.CoreEnv method),
42

get_step_events()
(maze.core.env.event_env_mixin.EventEnvMixin
method), 46

get_step_events()
(maze.core.env.maze_env.MazeEnv method), 44

get_tensor_obj_attr_names()
(maze.train.parallelization.base_worker.BaseWorkerOutput
static method), 204

get_trajectory_files()
(maze.train.trainers.imitation.in_memory_data_set.InMemoryImitationDataSet
static method), 197

GlobalAveragePoolingBlock (class in
maze.perception.blocks.general.gap), 132

GlobalLogState (class in
maze.core.log_stats.log_stats), 85

GraphAttentionBlock (class in
maze.perception.blocks.feed_forward.graph_attention),
129

GraphConvBlock (class in
maze.perception.blocks.feed_forward.graph_conv),
128

group() (maze.core.log_stats.log_stats.LogStatsKey
property), 89

GymActionConversion (class in
maze.core.wrappers.maze_gym_env_wrapper),
72

GymCoreEnv (class in
maze.core.wrappers.maze_gym_env_wrapper),
70

GymMazeEnv (class in
maze.core.wrappers.maze_gym_env_wrapper),
70

GymObservationConversion (class in
maze.core.wrappers.maze_gym_env_wrapper),
71

GymRenderer (class in
maze.core.wrappers.maze_gym_env_wrapper),
71

GymRewardAggregator (class in
maze.core.wrappers.maze_gym_env_wrapper),
71

H
histogram (class in

maze.core.log_stats.reducer_functions), 89
hook_on_log_step (maze.core.log_stats.log_stats.GlobalLogState

attribute), 85

I
imitation_events (maze.train.trainers.imitation.bc_trainer.BCTrainer

attribute), 198
ImitationEvaluator (class in

maze.train.trainers.imitation.imitation_evaluator),
196

ImitationEvents (class in
maze.train.trainers.imitation.imitation_events),
195

ImitationRunner (class in
maze.train.trainers.imitation.imitation_runners),
196

ImpalaAlgorithmConfig (class in
maze.train.trainers.impala.impala_algorithm_config),
179

ImpalaLearner (class in
maze.train.trainers.impala.impala_learner),
182

increment_env_step()
(maze.core.env.environment_context.EnvironmentContext
method), 49

increment_log_step (class in
maze.core.log_stats.log_stats), 85

InferenceBlock (class in
maze.perception.blocks.inference), 125

InferenceGraph (class in
maze.perception.blocks.inference), 125

init_env_and_agent()
(maze.core.rollout.rollout_runner.RolloutRunner
static method), 99

InMemoryImitationDataSet (class in
maze.train.trainers.imitation.in_memory_data_set),
197

interface_to_subscribers
(maze.core.events.pubsub.Pubsub attribute), 74

IntRangeArg (class in
maze.core.rendering.renderer_args), 95

is_actor_done() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

is_actor_done() (maze.core.env.core_env.CoreEnv
method), 43

is_actor_done() (maze.core.env.maze_env.MazeEnv
method), 44

is_actor_done() (maze.core.env.structured_env.StructuredEnv
method), 42

is_actor_done() (maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv
method), 71

is_actor_done() (maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv
method), 205

is_initialized() (maze.core.wrappers.observation_normalization.normalization_strategies.base.ObservationNormalizationStrategy
method), 66

iterate_event_records()
(maze.core.events.event_service.EventService
method), 75

344 Index

Maze

K
KeyboardControlledTrajectoryViewer (class

in maze.core.rendering.keyboard_controlled_trajectory_viewer),
94

kl() (maze.distributions.bernoulli.BernoulliProbabilityDistribution
method), 158

kl() (maze.distributions.beta.BetaProbabilityDistribution
method), 160

kl() (maze.distributions.dict.DictProbabilityDistribution
method), 161

kl() (maze.distributions.distribution.ProbabilityDistribution
method), 155

kl() (maze.distributions.gaussian.DiagonalGaussianProbabilityDistribution
method), 159

kl() (maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution
method), 160

kl() (maze.distributions.squashed_gaussian.SquashedGaussianProbabilityDistribution
method), 159

kl() (maze.distributions.torch_dist.TorchProbabilityDistribution
method), 156

KpiCalculator (class in
maze.core.log_events.kpi_calculator), 77

L
l2_penalty (maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig

attribute), 190
last_stats (maze.core.log_stats.log_stats.LogStatsAggregator

attribute), 84
last_stats_step (maze.core.log_stats.log_stats.LogStatsAggregator

attribute), 84
learner_rollout_on_agent_output()

(maze.train.trainers.impala.impala_learner.ImpalaLearner
method), 183

learning_rate() (maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

list_to_dict (class in maze.core.utils.config_utils),
163

load() (maze.perception.models.space_config.SpacesConfig
class method), 144

load_episode_record()
(maze.train.trainers.imitation.in_memory_data_set.InMemoryImitationDataSet
static method), 197

load_state() (maze.train.trainers.common.actor_critic.actor_critic_trainer.MultiStepActorCritic
method), 170

load_state() (maze.train.trainers.common.trainer.Trainer
method), 166

load_state() (maze.train.trainers.es.es_trainer.ESTrainer
method), 189

load_state() (maze.train.trainers.imitation.bc_trainer.BCTrainer
method), 198

load_state() (maze.train.trainers.impala.impala_trainer.MultiStepIMPALA
method), 177

load_state_dict()
(maze.core.agent.torch_actor_critic.TorchActorCritic

method), 117
load_state_dict()

(maze.core.agent.torch_model.TorchModel
method), 117

load_state_dict()
(maze.core.agent.torch_policy.TorchPolicy
method), 106

load_state_dict()
(maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

load_state_dict()
(maze.core.agent.torch_state_critic.TorchStateCritic
method), 111

load_state_dict()
(maze.train.trainers.common.actor_critic.actor_critic_trainer.MultiStepActorCritic
method), 170

load_state_dict()
(maze.train.trainers.es.es_trainer.ESTrainer
method), 189

load_state_dict()
(maze.train.trainers.imitation.bc_trainer.BCTrainer
method), 199

load_state_dict()
(maze.train.trainers.impala.impala_trainer.MultiStepIMPALA
method), 177

log_prob() (maze.distributions.bernoulli.BernoulliProbabilityDistribution
method), 158

log_prob() (maze.distributions.beta.BetaProbabilityDistribution
method), 160

log_prob() (maze.distributions.categorical.CategoricalProbabilityDistribution
method), 158

log_prob() (maze.distributions.dict.DictProbabilityDistribution
method), 161

log_prob() (maze.distributions.distribution.ProbabilityDistribution
method), 155

log_prob() (maze.distributions.gaussian.DiagonalGaussianProbabilityDistribution
method), 159

log_prob() (maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution
method), 161

log_prob() (maze.distributions.squashed_gaussian.SquashedGaussianProbabilityDistribution
method), 159

log_prob() (maze.distributions.torch_dist.TorchProbabilityDistribution
method), 156

log_probs_from_logits_and_actions_and_spaces
(class in maze.train.trainers.impala.impala_vtrace),
184

log_stats (class in maze.core.log_stats.log_stats), 85
LogEventsWriter (class in

maze.core.log_events.log_events_writer),
78

LogEventsWriterRegistry (class in
maze.core.log_events.log_events_writer_registry),
78

LogEventsWriterTSV (class in

Index 345

Maze

maze.core.log_events.log_events_writer_tsv),
78

logits_dict_to_distribution()
(maze.core.agent.torch_policy.TorchPolicy
method), 106

logits_dict_to_distribution()
(maze.distributions.distribution_mapper.DistributionMapper
method), 157

LogStats (in module maze.core.log_stats.log_stats), 90
LogStatsAggregator (class in

maze.core.log_stats.log_stats), 83
LogStatsConsumer (class in

maze.core.log_stats.log_stats), 83
LogStatsEnv (class in

maze.core.log_stats.log_stats_env), 81
LogStatsGroup (in module

maze.core.log_stats.log_stats), 89
LogStatsKey (class in maze.core.log_stats.log_stats),

89
LogStatsLevel (class in

maze.core.log_stats.log_stats), 83
LogStatsLogger (class in

maze.core.log_stats.log_stats), 85
LogStatsValue (in module

maze.core.log_stats.log_stats), 89
LogStatsWrapper (class in

maze.core.wrappers.log_stats_wrapper),
53

LogStatsWriter (class in
maze.core.log_stats.log_stats), 84

LogStatsWriterConsole (class in
maze.core.log_stats.log_stats_writer_console),
82

LogStatsWriterTensorboard (class in
maze.core.log_stats.log_stats_writer_tensorboard),
82

loss (maze.train.trainers.imitation.bc_trainer.BCTrainer
attribute), 199

lr (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 174

lr (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

lr (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

LSTMBlock (class in
maze.perception.blocks.recurrent.lstm), 130

LSTMLastStepBlock (class in
maze.perception.blocks.joint_blocks.lstm_last_step),
138

M
make_env_from_hydra (class in

maze.core.utils.config_utils), 164
make_gym_maze_env (class in

maze.core.wrappers.maze_gym_env_wrapper),
70

make_module_init_normc (class in
maze.perception.weight_init), 154

make_normalized_env_factory (class in
maze.core.wrappers.observation_normalization.observation_normalization_utils),
68

MaskedGlobalPoolingBlock (class in
maze.perception.blocks.general.masked_global_pooling),
132

max_episode_steps
(maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig
attribute), 200

max_epochs (maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig
attribute), 190

max_grad_norm (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 174

max_grad_norm (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

max_grad_norm (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

max_steps (maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig
attribute), 190

maze_env (maze.core.env.maze_env.MazeEnv at-
tribute), 44

maze_run (class in maze.maze_cli), 98
maze_to_space() (maze.core.env.action_conversion.ActionConversionInterface

method), 48
maze_to_space() (maze.core.env.observation_conversion.ObservationConversionInterface

method), 47
maze_to_space() (maze.core.wrappers.maze_gym_env_wrapper.GymActionConversion

method), 72
maze_to_space() (maze.core.wrappers.maze_gym_env_wrapper.GymObservationConversion

method), 71
MazeActionCandidates (class in

maze.core.agent_integration.maze_action_candidates),
121

MazeActionType (in module
maze.core.env.maze_action), 48

MazeEnv (class in maze.core.env.maze_env), 43
MazeStateType (in module

maze.core.env.maze_state), 48
MeanZeroStdOneObservationNormalizationStrategy

(class in maze.core.wrappers.observation_normalization.normalization_strategies.mean_zero_std_one),
69

metadata (maze.core.env.maze_env.MazeEnv at-
tribute), 44

ModelConfig (class in
maze.train.trainers.common.training_runner),
168

ModelSelectionBase (class in
maze.train.trainers.common.model_selection.model_selection_base),
168

MonitoringSetup (class in

346 Index

Maze

maze.core.trajectory_recorder.monitoring_setup),
97

multi_binary_accuracy()
(maze.train.trainers.imitation.imitation_events.ImitationEvents
method), 195

MultiCategoricalProbabilityDistribution
(class in maze.distributions.multi_categorical),
160

MultiIndexSlicingBlock (class in
maze.perception.blocks.general.multi_index_slicing),
133

MultiStepA2C (class in
maze.train.trainers.a2c.a2c_trainer), 172

MultiStepActorCritic (class in
maze.train.trainers.common.actor_critic.actor_critic_trainer),
170

MultiStepActorCriticEvents (class in
maze.train.trainers.common.actor_critic.actor_critic_events),
171

MultiStepIMPALA (class in
maze.train.trainers.impala.impala_trainer),
177

MultiStepIMPALAEvents (class in
maze.train.trainers.impala.impala_events),
181

MultiStepPPO (class in
maze.train.trainers.ppo.ppo_trainer), 174

N
n_epochs (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig

attribute), 174
n_epochs (maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig

attribute), 200
n_epochs (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig

attribute), 180
n_epochs (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig

attribute), 176
n_eval_episodes (maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig

attribute), 200
n_eval_rollouts (maze.train.trainers.es.es_runners.ESDevRunner

attribute), 191
n_eval_workers (maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig

attribute), 200
n_optimization_epochs

(maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

n_rollout_steps (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 174

n_rollout_steps (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

n_rollout_steps (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

n_rollouts_per_update
(maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig

attribute), 190
n_timesteps_per_update

(maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig
attribute), 190

needs_state() (maze.core.agent.default_policy.DefaultPolicy
method), 107

needs_state() (maze.core.agent.dummy_cartpole_policy.DummyCartPolePolicy
method), 108

needs_state() (maze.core.agent.policy.Policy
method), 105

needs_state() (maze.core.agent.random_policy.RandomPolicy
method), 108

needs_state() (maze.core.agent.torch_policy.TorchPolicy
method), 107

neg_log_prob() (maze.distributions.dict.DictProbabilityDistribution
method), 161

neg_log_prob() (maze.distributions.distribution.ProbabilityDistribution
method), 155

neg_log_prob() (maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution
method), 161

NoDictActionWrapper (class in
maze.core.wrappers.no_dict_action_wrapper),
58

NoDictObservationWrapper (class in
maze.core.wrappers.no_dict_observation_wrapper),
58

NoDictSpacesWrapper (class in
maze.core.wrappers.no_dict_spaces_wrapper),
56

noise_stddev (maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig
attribute), 190

noop_action() (maze.core.env.action_conversion.ActionConversionInterface
method), 48

normalization_samples
(maze.train.trainers.common.training_runner.TrainingRunner
attribute), 167

normalize_and_process_value()
(maze.core.wrappers.observation_normalization.normalization_strategies.base.ObservationNormalizationStrategy
method), 66

normalize_value()
(maze.core.wrappers.observation_normalization.normalization_strategies.base.ObservationNormalizationStrategy
method), 67

normalize_value()
(maze.core.wrappers.observation_normalization.normalization_strategies.mean_zero_std_one.MeanZeroStdOneObservationNormalizationStrategy
method), 69

normalize_value()
(maze.core.wrappers.observation_normalization.normalization_strategies.range_zero_one.RangeZeroOneObservationNormalizationStrategy
method), 69

normalized_forward()
(maze.perception.blocks.feed_forward.dense.DenseBlock
method), 126

normalized_forward()
(maze.perception.blocks.feed_forward.graph_attention.GraphAttentionBlock
method), 129

Index 347

Maze

normalized_forward()
(maze.perception.blocks.feed_forward.graph_conv.GraphConvBlock
method), 128

normalized_forward()
(maze.perception.blocks.feed_forward.strided_conv.StridedConvolutionBlock
method), 128

normalized_forward()
(maze.perception.blocks.feed_forward.vgg_conv.VGGConvolutionBlock
method), 127

normalized_forward()
(maze.perception.blocks.general.gap.GlobalAveragePoolingBlock
method), 132

normalized_forward()
(maze.perception.blocks.recurrent.lstm.LSTMBlock
method), 130

normalized_forward()
(maze.perception.blocks.shape_normalization.ShapeNormalizationBlock
method), 125

normalized_space()
(maze.core.wrappers.observation_normalization.normalization_strategies.base.ObservationNormalizationStrategy
method), 67

NotebookEventLogsViewer (class in
maze.core.rendering.notebook_event_logs_viewer),
93

NotebookTrajectoryViewer (class in
maze.core.rendering.notebook_trajectory_viewer),
93

notify_event() (maze.core.events.event_service.EventScope
method), 74

notify_event() (maze.core.events.event_service.EventService
method), 75

notify_event() (maze.core.events.pubsub.Pubsub
method), 74

notify_event() (maze.core.events.pubsub.Subscriber
method), 73

notify_next_step()
(maze.core.events.event_service.EventScope
method), 74

notify_next_step()
(maze.core.events.event_service.EventService
method), 75

notify_next_step()
(maze.core.events.pubsub.Pubsub method),
74

num_actors (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

num_critics() (maze.core.agent.torch_state_action_critic.TorchSharedStateActionCritic
property), 115

num_critics() (maze.core.agent.torch_state_action_critic.TorchStateActionCritic
property), 114

num_critics() (maze.core.agent.torch_state_action_critic.TorchStepStateActionCritic
property), 116

num_critics() (maze.core.agent.torch_state_critic.TorchDeltaStateCritic
property), 112

num_critics() (maze.core.agent.torch_state_critic.TorchSharedStateCritic
property), 111

num_critics() (maze.core.agent.torch_state_critic.TorchStateCritic
property), 111

num_critics() (maze.core.agent.torch_state_critic.TorchStepStateCritic
property), 111

num_params() (maze.core.agent.torch_model.TorchModel
property), 117

O
observation() (maze.core.wrappers.dict_observation_wrapper.DictObservationWrapper

method), 57
observation() (maze.core.wrappers.no_dict_observation_wrapper.NoDictObservationWrapper

method), 58
observation() (maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper

method), 56
observation() (maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper

method), 65
observation() (maze.core.wrappers.observation_preprocessing.preprocessing_wrapper.PreProcessingWrapper

method), 61
observation() (maze.core.wrappers.observation_stack_wrapper.ObservationStackWrapper

method), 57
observation() (maze.core.wrappers.wrapper.ObservationWrapper

method), 51
observation_conversion()

(maze.core.env.maze_env.MazeEnv property),
45

observation_conversion_dict
(maze.core.env.maze_env.MazeEnv attribute),
45

observation_original()
(maze.core.log_events.observation_events.ObservationEvents
method), 79

observation_processed()
(maze.core.log_events.observation_events.ObservationEvents
method), 79

observation_space()
(maze.core.env.maze_env.MazeEnv property),
45

observation_space()
(maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin
property), 43

observation_space()
(maze.core.wrappers.no_dict_observation_wrapper.NoDictObservationWrapper
property), 58

observation_space()
(maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper
property), 56

observation_space()
(maze.core.wrappers.sorted_spaces_wrapper.SortedSpacesWrapper
property), 56

observation_space()
(maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv
property), 205

348 Index

Maze

observation_spaces_dict()
(maze.core.env.maze_env.MazeEnv property),
45

observation_spaces_dict()
(maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin
property), 43

observation_spaces_dict()
(maze.core.wrappers.no_dict_observation_wrapper.NoDictObservationWrapper
property), 58

observation_spaces_dict()
(maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper
property), 56

observation_spaces_dict()
(maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv
property), 205

observation_spaces_to_in_shapes (class in
maze.perception.perception_utils), 153

ObservationAggregator (class in
maze.train.parallelization.observation_aggregator),
203

ObservationConversionInterface (class in
maze.core.env.observation_conversion), 47

ObservationEvents (class in
maze.core.log_events.observation_events),
79

ObservationLoggingWrapper (class in
maze.core.wrappers.observation_logging_wrapper),
54

ObservationNormalizationStrategy (class in
maze.core.wrappers.observation_normalization.normalization_strategies.base),
66

ObservationNormalizationWrapper (class in
maze.core.wrappers.observation_normalization.observation_normalization_wrapper),
65

ObservationStackWrapper (class in
maze.core.wrappers.observation_stack_wrapper),
57

ObservationWrapper (class in
maze.core.wrappers.wrapper), 51

obtain_normalization_statistics (class in
maze.core.wrappers.observation_normalization.observation_normalization_utils),
67

on_log_step_increment()
(maze.core.log_stats.log_stats_writer_tensorboard.LogStatsWriterTensorboard
method), 82

OneHotPreProcessor (class in
maze.core.wrappers.observation_preprocessing.preprocessors.one_hot),
62

Optimizer (class in
maze.train.trainers.es.optimizers.base_optimizer),
192

optimizer (maze.train.trainers.es.es_algorithm_config.ESAlgorithmConfig
attribute), 190

optimizer (maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig

attribute), 200
optimizer (maze.train.trainers.imitation.bc_trainer.BCTrainer

attribute), 199
OptionsArrayArg (class in

maze.core.rendering.renderer_args), 95
out_shapes() (maze.perception.blocks.base.PerceptionBlock

method), 124
output_name() (maze.core.log_stats.log_stats.LogStatsKey

property), 89
override (class in maze.core.annotations), 162

P
ParallelLoadedImitationDataset (class in

maze.train.trainers.imitation.parallel_loaded_im_data_set),
196

ParallelRolloutRunner (class in
maze.core.rollout.parallel_rollout_runner),
101

ParallelRolloutWorker (class in
maze.core.rollout.parallel_rollout_runner),
102

parameters() (maze.core.agent.torch_actor_critic.TorchActorCritic
method), 117

parameters() (maze.core.agent.torch_model.TorchModel
method), 117

parameters() (maze.core.agent.torch_policy.TorchPolicy
method), 107

parameters() (maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

parameters() (maze.core.agent.torch_state_critic.TorchStateCritic
method), 111

patience (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 174

patience (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

patience (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

per_critic_parameters()
(maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

PerceptionBlock (class in
maze.perception.blocks.base), 124

Policy (class in maze.core.agent.policy), 104
policy (maze.train.trainers.imitation.bc_trainer.BCTrainer

attribute), 199
policy() (maze.perception.models.custom_model_composer.CustomModelComposer

property), 144
policy() (maze.perception.models.model_composer.BaseModelComposer

property), 140
policy() (maze.perception.models.policies.base_policy_composer.BasePolicyComposer

property), 145
policy() (maze.perception.models.policies.probabilistic_policy_composer.ProbabilisticPolicyComposer

property), 146

Index 349

Maze

policy() (maze.perception.models.template_model_composer.TemplateModelComposer
property), 142

policy_entropy() (maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

policy_entropy() (maze.train.trainers.imitation.imitation_events.ImitationEvents
method), 195

policy_entropy() (maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 181

policy_grad_norm()
(maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

policy_grad_norm()
(maze.train.trainers.es.es_events.ESEvents
method), 190

policy_grad_norm()
(maze.train.trainers.imitation.imitation_events.ImitationEvents
method), 195

policy_grad_norm()
(maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 181

policy_l2_norm() (maze.train.trainers.imitation.imitation_events.ImitationEvents
method), 195

policy_loss() (maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

policy_loss() (maze.train.trainers.imitation.imitation_events.ImitationEvents
method), 195

policy_loss() (maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 181

policy_loss_coef (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 174

policy_loss_coef (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

policy_loss_coef (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

policy_norm() (maze.train.trainers.es.es_events.ESEvents
method), 190

POST_PROCESSING_FUNCS
(maze.core.rendering.events_stats_renderer.EventStatsRenderer
attribute), 91

PPOAlgorithmConfig (class in
maze.train.trainers.ppo.ppo_algorithm_config),
175

predict_next_q_values()
(maze.core.agent.torch_state_action_critic.TorchSharedStateActionCritic
method), 115

predict_next_q_values()
(maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

predict_next_q_values()
(maze.core.agent.torch_state_action_critic.TorchStepStateActionCritic
method), 116

predict_q_values()
(maze.core.agent.state_action_critic.StateActionCritic
method), 112

predict_q_values()
(maze.core.agent.torch_state_action_critic.TorchSharedStateActionCritic
method), 115

predict_q_values()
(maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

predict_q_values()
(maze.core.agent.torch_state_action_critic.TorchStepStateActionCritic
method), 116

predict_value() (maze.core.agent.state_critic.StateCritic
method), 109

predict_value() (maze.core.agent.torch_state_critic.TorchDeltaStateCritic
method), 112

predict_value() (maze.core.agent.torch_state_critic.TorchStateCritic
method), 111

predict_values() (maze.core.agent.state_critic.StateCritic
method), 109

predict_values() (maze.core.agent.torch_state_critic.TorchDeltaStateCritic
method), 112

predict_values() (maze.core.agent.torch_state_critic.TorchSharedStateCritic
method), 111

predict_values() (maze.core.agent.torch_state_critic.TorchStepStateCritic
method), 111

PreProcessingWrapper (class in
maze.core.wrappers.observation_preprocessing.preprocessing_wrapper),
61

PreProcessor (class in
maze.core.wrappers.observation_preprocessing.preprocessors.base),
61

ProbabilisticPolicyComposer (class in
maze.perception.models.policies.probabilistic_policy_composer),
146

ProbabilityDistribution (class in
maze.distributions.distribution), 155

process() (maze.core.wrappers.observation_preprocessing.preprocessors.base.PreProcessor
method), 61

process() (maze.core.wrappers.observation_preprocessing.preprocessors.flatten.FlattenPreProcessor
method), 62

process() (maze.core.wrappers.observation_preprocessing.preprocessors.one_hot.OneHotPreProcessor
method), 62

process() (maze.core.wrappers.observation_preprocessing.preprocessors.resize_img.ResizeImgPreProcessor
method), 63

process() (maze.core.wrappers.observation_preprocessing.preprocessors.rgb2gray.Rgb2GrayPreProcessor
method), 64

process() (maze.core.wrappers.observation_preprocessing.preprocessors.transpose.TransposePreProcessor
method), 63

process() (maze.core.wrappers.observation_preprocessing.preprocessors.unsqueeze.UnSqueezePreProcessor
method), 64

processed_shape()
(maze.core.wrappers.observation_preprocessing.preprocessors.base.PreProcessor
method), 61

processed_shape()
(maze.core.wrappers.observation_preprocessing.preprocessors.flatten.FlattenPreProcessor
method), 62

350 Index

Maze

processed_shape()
(maze.core.wrappers.observation_preprocessing.preprocessors.one_hot.OneHotPreProcessor
method), 62

processed_shape()
(maze.core.wrappers.observation_preprocessing.preprocessors.resize_img.ResizeImgPreProcessor
method), 63

processed_shape()
(maze.core.wrappers.observation_preprocessing.preprocessors.rgb2gray.Rgb2GrayPreProcessor
method), 64

processed_shape()
(maze.core.wrappers.observation_preprocessing.preprocessors.transpose.TransposePreProcessor
method), 63

processed_shape()
(maze.core.wrappers.observation_preprocessing.preprocessors.unsqueeze.UnSqueezePreProcessor
method), 64

processed_space()
(maze.core.wrappers.observation_preprocessing.preprocessors.base.PreProcessor
method), 61

processed_space()
(maze.core.wrappers.observation_preprocessing.preprocessors.flatten.FlattenPreProcessor
method), 62

processed_space()
(maze.core.wrappers.observation_preprocessing.preprocessors.one_hot.OneHotPreProcessor
method), 62

processed_space()
(maze.core.wrappers.observation_preprocessing.preprocessors.resize_img.ResizeImgPreProcessor
method), 63

processed_space()
(maze.core.wrappers.observation_preprocessing.preprocessors.rgb2gray.Rgb2GrayPreProcessor
method), 64

processed_space()
(maze.core.wrappers.observation_preprocessing.preprocessors.transpose.TransposePreProcessor
method), 63

processed_space()
(maze.core.wrappers.observation_preprocessing.preprocessors.unsqueeze.UnSqueezePreProcessor
method), 64

Pubsub (class in maze.core.events.pubsub), 73

Q
query_events() (maze.core.events.event_collection.EventCollection

method), 75
query_events() (maze.core.events.pubsub.Subscriber

method), 73
query_events() (maze.core.log_events.episode_event_log.EpisodeEventLog

method), 77
queue_out_of_sync_factor

(maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

R
random_split() (maze.train.trainers.imitation.in_memory_data_set.InMemoryImitationDataSet

method), 198
RandomPolicy (class in

maze.core.agent.random_policy), 107

RandomResetWrapper (class in
maze.core.wrappers.random_reset_wrapper),
55

RangeZeroOneObservationNormalizationStrategy
(class in maze.core.wrappers.observation_normalization.normalization_strategies.range_zero_one),
69

re_init_networks()
(maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

read_config (class in maze.core.utils.config_utils),
163

real_time() (maze.train.trainers.es.es_events.ESEvents
method), 190

receive() (maze.core.log_stats.log_stats.LogStatsAggregator
method), 84

receive() (maze.core.log_stats.log_stats.LogStatsConsumer
method), 83

receive() (maze.core.log_stats.log_stats.LogStatsLogger
method), 85

receive() (maze.core.rollout.parallel_rollout_runner.EpisodeRecorder
method), 102

record_event_logs()
(maze.core.log_events.log_events_writer_registry.LogEventsWriterRegistry
class method), 78

record_trajectory_data()
(maze.core.trajectory_recorder.trajectory_writer_registry.TrajectoryWriterRegistry
class method), 95

RecordableEnvMixin (class in
maze.core.env.recordable_env_mixin), 45

reduce() (maze.core.log_stats.log_stats.LogStatsAggregator
method), 84

register_consumer()
(maze.core.log_stats.log_stats.LogStatsAggregator
method), 84

register_log_stats_writer (class in
maze.core.log_stats.log_stats), 85

register_new_observation_normalization_strategy()
(maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper
class method), 65

register_subscriber()
(maze.core.events.pubsub.Pubsub method),
74

register_writer()
(maze.core.log_events.log_events_writer_registry.LogEventsWriterRegistry
class method), 78

register_writer()
(maze.core.trajectory_recorder.trajectory_writer_registry.TrajectoryWriterRegistry
class method), 95

Registry (class in maze.core.utils.registry), 164
render() (maze.core.env.render_env_mixin.RenderEnvMixin

method), 45
render() (maze.core.rendering.keyboard_controlled_trajectory_viewer.KeyboardControlledTrajectoryViewer

method), 94
render() (maze.core.rendering.notebook_event_logs_viewer.NotebookEventLogsViewer

Index 351

Maze

method), 93
render() (maze.core.rendering.notebook_trajectory_viewer.NotebookTrajectoryViewer

method), 93
render() (maze.core.rendering.renderer.Renderer

method), 90
render() (maze.core.wrappers.maze_gym_env_wrapper.GymRenderer

method), 71
render_current_episode_stats()

(maze.core.rendering.events_stats_renderer.EventStatsRenderer
method), 91

render_stats() (maze.core.rendering.step_stats_renderer.StepStatsRenderer
static method), 91

render_stats() (maze.core.wrappers.log_stats_wrapper.LogStatsWrapper
method), 53

render_timeline_stat()
(maze.core.rendering.events_stats_renderer.EventStatsRenderer
static method), 92

RenderEnvMixin (class in
maze.core.env.render_env_mixin), 45

Renderer (class in maze.core.rendering.renderer), 90
RendererArg (class in

maze.core.rendering.renderer_args), 94
RepeatToMatchBlock (class in

maze.perception.blocks.general.repeat_to_match),
133

required_logits_shape()
(maze.distributions.bernoulli.BernoulliProbabilityDistribution
class method), 158

required_logits_shape()
(maze.distributions.beta.BetaProbabilityDistribution
class method), 160

required_logits_shape()
(maze.distributions.categorical.CategoricalProbabilityDistribution
class method), 158

required_logits_shape()
(maze.distributions.distribution_mapper.DistributionMapper
method), 157

required_logits_shape()
(maze.distributions.gaussian.DiagonalGaussianProbabilityDistribution
class method), 159

required_logits_shape()
(maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution
class method), 161

required_logits_shape()
(maze.distributions.squashed_gaussian.SquashedGaussianProbabilityDistribution
class method), 159

required_logits_shape()
(maze.distributions.torch_dist.TorchProbabilityDistribution
class method), 156

reset() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

reset() (maze.core.env.base_env.BaseEnv method), 41
reset() (maze.core.env.core_env.CoreEnv method), 43
reset() (maze.core.env.maze_env.MazeEnv method),

45
reset() (maze.core.events.pubsub.Subscriber method),

73
reset() (maze.core.wrappers.log_stats_wrapper.LogStatsWrapper

method), 54
reset() (maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv

method), 71
reset() (maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper

method), 56
reset() (maze.core.wrappers.observation_stack_wrapper.ObservationStackWrapper

method), 57
reset() (maze.core.wrappers.random_reset_wrapper.RandomResetWrapper

method), 55
reset() (maze.core.wrappers.time_limit_wrapper.TimeLimitWrapper

method), 55
reset() (maze.core.wrappers.wrapper.ObservationWrapper

method), 51
reset() (maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv

method), 204
reset() (maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv

method), 205
reset() (maze.train.parallelization.observation_aggregator.ObservationAggregator

method), 203
reset_env_episode()

(maze.core.env.environment_context.EnvironmentContext
method), 49

ResizeImgPreProcessor (class in
maze.core.wrappers.observation_preprocessing.preprocessors.resize_img),
63

reverse_action() (maze.core.wrappers.dict_action_wrapper.DictActionWrapper
method), 58

reverse_action() (maze.core.wrappers.discretize_actions_wrapper.DiscretizeActionsWrapper
method), 60

reverse_action() (maze.core.wrappers.no_dict_action_wrapper.NoDictActionWrapper
method), 58

reverse_action() (maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper
method), 56

reverse_action() (maze.core.wrappers.split_actions_wrapper.SplitActionsWrapper
method), 59

reverse_action() (maze.core.wrappers.wrapper.ActionWrapper
method), 52

reward() (maze.core.wrappers.reward_clipping_wrapper.RewardClippingWrapper
method), 60

reward() (maze.core.wrappers.reward_scaling_wrapper.RewardScalingWrapper
method), 60

reward() (maze.core.wrappers.wrapper.RewardWrapper
method), 52

reward_clipping (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

reward_range (maze.core.env.maze_env.MazeEnv at-
tribute), 45

RewardAggregatorInterface (class in
maze.core.env.reward), 48

RewardClippingWrapper (class in

352 Index

Maze

maze.core.wrappers.reward_clipping_wrapper),
60

RewardScalingWrapper (class in
maze.core.wrappers.reward_scaling_wrapper),
60

RewardWrapper (class in
maze.core.wrappers.wrapper), 52

Rgb2GrayPreProcessor (class in
maze.core.wrappers.observation_preprocessing.preprocessors.rgb2gray),
64

rollout() (maze.train.parallelization.base_worker.BaseWorker
method), 203

rollout() (maze.train.parallelization.distributed_actors.actor.ActorAgent
method), 206

rollout() (maze.train.trainers.es.distributed.es_rollout_wrapper.ESRolloutWorkerWrapper
method), 194

RolloutRunner (class in
maze.core.rollout.rollout_runner), 99

run() (maze.core.rollout.parallel_rollout_runner.ParallelRolloutWorker
static method), 102

run() (maze.core.rollout.rollout_runner.RolloutRunner
method), 99

run() (maze.runner.Runner method), 98
run() (maze.train.trainers.common.training_runner.TrainingRunner

method), 167
run() (maze.train.trainers.es.es_runners.ESMasterRunner

method), 191
run() (maze.train.trainers.imitation.imitation_runners.ImitationRunner

method), 196
run() (maze.train.trainers.imitation.parallel_loaded_im_data_set.DataLoadWorker

static method), 197
run_interaction_maze()

(maze.core.rollout.rollout_runner.RolloutRunner
static method), 100

run_rollout_maze()
(maze.core.agent_integration.agent_execution.AgentExecution
method), 118

run_with() (maze.core.rollout.parallel_rollout_runner.ParallelRolloutRunner
method), 101

run_with() (maze.core.rollout.rollout_runner.RolloutRunner
method), 100

run_with() (maze.core.rollout.sequential_rollout_runner.SequentialRolloutRunner
method), 101

Runner (class in maze.runner), 98

S
sample() (maze.distributions.beta.BetaProbabilityDistribution

method), 160
sample() (maze.distributions.dict.DictProbabilityDistribution

method), 161
sample() (maze.distributions.distribution.ProbabilityDistribution

method), 155
sample() (maze.distributions.multi_categorical.MultiCategoricalProbabilityDistribution

method), 161

sample() (maze.distributions.squashed_gaussian.SquashedGaussianProbabilityDistribution
method), 159

sample() (maze.distributions.torch_dist.TorchProbabilityDistribution
method), 156

sample_index() (maze.train.trainers.es.es_shared_noise_table.SharedNoiseTable
method), 192

save() (maze.perception.blocks.inference.InferenceGraph
method), 126

save() (maze.perception.models.space_config.SpacesConfig
method), 144

save_models() (maze.perception.models.model_composer.BaseModelComposer
method), 140

seed() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

seed() (maze.core.env.base_env.BaseEnv method), 41
seed() (maze.core.env.core_env.CoreEnv method), 43
seed() (maze.core.env.maze_env.MazeEnv method), 45
seed() (maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv

method), 71
seed() (maze.core.wrappers.time_limit_wrapper.TimeLimitWrapper

method), 55
seed() (maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv

method), 204
seed() (maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv

method), 206
SelfAttentionConvBlock (class in

maze.perception.blocks.general.self_attention_conv),
134

SelfAttentionSeqBlock (class in
maze.perception.blocks.general.self_attention_seq),
134

SequentialRolloutRunner (class in
maze.core.rollout.sequential_rollout_runner),
100

SerializableEnvMixin (class in
maze.core.env.serializable_env_mixin), 46

SerializedTorchPolicy (class in
maze.core.agent.serialized_torch_policy),
108

set_abort() (maze.train.trainers.es.distributed.es_rollout_wrapper.ESRolloutWorkerWrapper
method), 194

set_actor_id() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

set_flat_parameters (class in
maze.train.trainers.es.es_utils), 195

set_is_actor_done()
(maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

set_max_episode_steps()
(maze.core.wrappers.time_limit_wrapper.TimeLimitWrapper
method), 55

set_normalization_statistics()
(maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper
method), 65

Index 353

Maze

set_observation_collection()
(maze.core.wrappers.observation_normalization.observation_normalization_wrapper.ObservationNormalizationWrapper
method), 66

set_random_states (class in
maze.core.utils.seeding), 162

set_statistics() (maze.core.wrappers.observation_normalization.normalization_strategies.base.ObservationNormalizationStrategy
method), 67

setup() (maze.train.trainers.es.optimizers.adam.Adam
method), 193

setup() (maze.train.trainers.es.optimizers.base_optimizer.Optimizer
method), 192

setup() (maze.train.trainers.es.optimizers.sgd.SGD
method), 192

SGD (class in maze.train.trainers.es.optimizers.sgd), 192
ShapeNormalizationBlock (class in

maze.perception.blocks.shape_normalization),
124

shared_noise_table_size
(maze.train.trainers.es.es_runners.ESMasterRunner
attribute), 191

SharedNoiseTable (class in
maze.train.trainers.es.es_shared_noise_table),
192

SharedStateActionCriticComposer (class in
maze.perception.models.critics.shared_state_action_critics_composer),
150

SharedStateCriticComposer (class in
maze.perception.models.critics.shared_state_critic_composer),
147

show() (maze.perception.blocks.inference.InferenceGraph
method), 126

SimpleEventLoggingSetup (class in
maze.core.log_events.log_events_utils), 79

SimpleStatsLoggingSetup (class in
maze.utils.log_stats_utils), 166

SimpleTrajectoryRecordingSetup (class in
maze.core.trajectory_recorder.trajectory_utils),
97

SimulatedEnvMixin (class in
maze.core.env.simulated_env_mixin), 47

SliceBlock (class in
maze.perception.blocks.general.slice), 135

SortedSpacesWrapper (class in
maze.core.wrappers.sorted_spaces_wrapper),
55

space() (maze.core.agent_integration.maze_action_candidates.ActionConversionCandidatesInterface
method), 121

space() (maze.core.env.action_conversion.ActionConversionInterface
method), 48

space() (maze.core.env.observation_conversion.ObservationConversionInterface
method), 47

space() (maze.core.wrappers.maze_gym_env_wrapper.GymActionConversion
method), 72

space() (maze.core.wrappers.maze_gym_env_wrapper.GymObservationConversion

method), 71
space_to_maze() (maze.core.agent_integration.maze_action_candidates.ActionConversionCandidatesInterface

method), 121
space_to_maze() (maze.core.env.action_conversion.ActionConversionInterface

method), 48
space_to_maze() (maze.core.env.observation_conversion.ObservationConversionInterface

method), 47
space_to_maze() (maze.core.wrappers.maze_gym_env_wrapper.GymActionConversion

method), 72
space_to_maze() (maze.core.wrappers.maze_gym_env_wrapper.GymObservationConversion

method), 71
spaces_config_dump_file

(maze.train.trainers.common.training_runner.TrainingRunner
attribute), 167

SpacesConfig (class in
maze.perception.models.space_config), 144

spec (maze.core.env.maze_env.MazeEnv attribute), 45
SplitActionsWrapper (class in

maze.core.wrappers.split_actions_wrapper),
59

SquashedGaussianProbabilityDistribution
(class in maze.distributions.squashed_gaussian),
159

stack_numpy_dict_list (class in
maze.train.utils.train_utils), 201

stack_torch_dict_list (class in
maze.train.utils.train_utils), 202

start() (maze.train.parallelization.distributed_actors.distributed_actors.BaseDistributedActors
method), 208

state_dict() (maze.core.agent.torch_actor_critic.TorchActorCritic
method), 117

state_dict() (maze.core.agent.torch_model.TorchModel
method), 117

state_dict() (maze.core.agent.torch_policy.TorchPolicy
method), 107

state_dict() (maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

state_dict() (maze.core.agent.torch_state_critic.TorchStateCritic
method), 111

state_dict_dump_file
(maze.train.trainers.common.training_runner.TrainingRunner
attribute), 167

StateActionCritic (class in
maze.core.agent.state_action_critic), 112

StateActionCriticComposer (in module
maze.perception.models.critics), 151

StateCritic (class in maze.core.agent.state_critic),
109

StateCriticComposer (in module
maze.perception.models.critics), 149

stats() (maze.core.rollout.parallel_rollout_runner.EpisodeStatsReport
property), 103

STEP (maze.core.log_stats.log_stats.LogStatsLevel at-
tribute), 83

354 Index

Maze

step() (maze.core.agent_integration.external_core_env.ExternalCoreEnv
method), 123

step() (maze.core.env.base_env.BaseEnv method), 41
step() (maze.core.env.core_env.CoreEnv method), 43
step() (maze.core.env.maze_env.MazeEnv method), 45
step() (maze.core.wrappers.log_stats_wrapper.LogStatsWrapper

method), 54
step() (maze.core.wrappers.maze_gym_env_wrapper.GymCoreEnv

method), 71
step() (maze.core.wrappers.no_dict_spaces_wrapper.NoDictSpacesWrapper

method), 56
step() (maze.core.wrappers.observation_logging_wrapper.ObservationLoggingWrapper

method), 54
step() (maze.core.wrappers.time_limit_wrapper.TimeLimitWrapper

method), 55
step() (maze.core.wrappers.wrapper.ActionWrapper

method), 52
step() (maze.core.wrappers.wrapper.ObservationWrapper

method), 51
step() (maze.core.wrappers.wrapper.RewardWrapper

method), 52
step() (maze.train.parallelization.distributed_env.distributed_env.BaseDistributedEnv

method), 204
step() (maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv

method), 206
step_id() (maze.core.trajectory_recorder.step_record.StepRecord

property), 96
step_without_observation()

(maze.core.env.simulated_env_mixin.SimulatedEnvMixin
method), 47

StepEventLog (class in
maze.core.log_events.step_event_log), 77

StepRecord (class in
maze.core.trajectory_recorder.step_record), 96

StepStateActionCriticComposer (class in
maze.perception.models.critics.step_state_action_critic_composer),
151

StepStateCriticComposer (class in
maze.perception.models.critics.step_state_critic_composer),
148

StepStatsRenderer (class in
maze.core.rendering.step_stats_renderer),
91

stop() (maze.train.parallelization.distributed_actors.distributed_actors.BaseDistributedActors
method), 208

StridedConvolutionBlock (class in
maze.perception.blocks.feed_forward.strided_conv),
127

StridedConvolutionDenseBlock (class in
maze.perception.blocks.joint_blocks.strided_conv_dense),
137

StructuredEnv (class in
maze.core.env.structured_env), 41

StructuredEnvSpacesMixin (class in

maze.core.env.structured_env_spaces_mixin),
43

Subscriber (class in maze.core.events.pubsub), 73
subscribers (maze.core.events.pubsub.Pubsub

attribute), 74

T
tag() (maze.core.wrappers.observation_preprocessing.preprocessors.base.PreProcessor

method), 62
template_perception_net()

(maze.perception.models.template_model_composer.TemplateModelComposer
method), 142

template_policy_net()
(maze.perception.models.template_model_composer.TemplateModelComposer
method), 142

template_q_value_net()
(maze.perception.models.template_model_composer.TemplateModelComposer
method), 142

template_value_net()
(maze.perception.models.template_model_composer.TemplateModelComposer
method), 142

TemplateModelComposer (class in
maze.perception.models.template_model_composer),
141

tensor_clamp (class in maze.distributions.utils), 157
time_backprob() (maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents

method), 181
time_collecting_actors()

(maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 182

time_dequeuing_actors()
(maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 182

time_epoch() (maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

time_learner_rollout()
(maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 182

time_loss_computation()
(maze.train.trainers.impala.impala_events.MultiStepIMPALAEvents
method), 182

time_rollout() (maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

time_update() (maze.train.trainers.common.actor_critic.actor_critic_events.MultiStepActorCriticEvents
method), 171

TimeEnvMixin (class in
maze.core.env.time_env_mixin), 46

TimeLimitWrapper (class in
maze.core.wrappers.time_limit_wrapper),
54

to() (maze.core.agent.torch_actor_critic.TorchActorCritic
method), 118

to() (maze.core.agent.torch_model.TorchModel
method), 117

Index 355

Maze

to() (maze.core.agent.torch_policy.TorchPolicy
method), 107

to() (maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

to() (maze.core.agent.torch_state_critic.TorchStateCritic
method), 111

to() (maze.train.parallelization.base_worker.BaseWorkerOutput
method), 204

to_recurrent_gym_space()
(maze.perception.builders.base.BaseModelBuilder
class method), 139

to_scalar_reward()
(maze.core.agent_integration.external_core_env.ExternalCoreEnvRewardAggregator
class method), 122

to_scalar_reward()
(maze.core.env.reward.RewardAggregatorInterface
class method), 48

to_scalar_reward()
(maze.core.wrappers.maze_gym_env_wrapper.GymRewardAggregator
class method), 71

TorchActorCritic (class in
maze.core.agent.torch_actor_critic), 117

TorchDeltaStateCritic (class in
maze.core.agent.torch_state_critic), 112

TorchModel (class in maze.core.agent.torch_model),
117

TorchPolicy (class in maze.core.agent.torch_policy),
105

TorchProbabilityDistribution (class in
maze.distributions.torch_dist), 156

TorchSharedStateActionCritic (class in
maze.core.agent.torch_state_action_critic),
115

TorchSharedStateCritic (class in
maze.core.agent.torch_state_critic), 111

TorchStateActionCritic (class in
maze.core.agent.torch_state_action_critic),
113

TorchStateCritic (class in
maze.core.agent.torch_state_critic), 110

TorchStepStateActionCritic (class in
maze.core.agent.torch_state_action_critic),
116

TorchStepStateCritic (class in
maze.core.agent.torch_state_critic), 111

traceback() (maze.core.rollout.parallel_rollout_runner.ExceptionReport
property), 103

train() (maze.core.agent.torch_actor_critic.TorchActorCritic
method), 118

train() (maze.core.agent.torch_model.TorchModel
method), 117

train() (maze.core.agent.torch_policy.TorchPolicy
method), 107

train() (maze.core.agent.torch_state_action_critic.TorchStateActionCritic

method), 114
train() (maze.core.agent.torch_state_critic.TorchStateCritic

method), 111
train() (maze.train.trainers.common.actor_critic.actor_critic_trainer.MultiStepActorCritic

method), 170
train() (maze.train.trainers.es.es_trainer.ESTrainer

method), 189
train() (maze.train.trainers.imitation.bc_trainer.BCTrainer

method), 199
train() (maze.train.trainers.impala.impala_trainer.MultiStepIMPALA

method), 177
train_async() (maze.train.trainers.impala.impala_trainer.MultiStepIMPALA

method), 177
train_stats (maze.train.trainers.imitation.bc_trainer.BCTrainer

attribute), 199
TrainConfig (class in

maze.train.trainers.common.training_runner),
167

Trainer (class in maze.train.trainers.common.trainer),
166

TrainingRunner (class in
maze.train.trainers.common.training_runner),
167

TrajectoryWriter (class in
maze.core.trajectory_recorder.trajectory_writer),
97

TrajectoryWriterFile (class in
maze.core.trajectory_recorder.trajectory_writer_file),
97

TrajectoryWriterRegistry (class in
maze.core.trajectory_recorder.trajectory_writer_registry),
95

TransposePreProcessor (class in
maze.core.wrappers.observation_preprocessing.preprocessors.transpose),
63

U
UnSqueezePreProcessor (class in

maze.core.wrappers.observation_preprocessing.preprocessors.unsqueeze),
64

unstack_numpy_list_dict (class in
maze.train.utils.train_utils), 202

unused (class in maze.core.annotations), 162
update() (maze.train.trainers.common.model_selection.best_model_selection.BestModelSelection

method), 168
update() (maze.train.trainers.common.model_selection.model_selection_base.ModelSelectionBase

method), 168
update() (maze.train.trainers.es.optimizers.base_optimizer.Optimizer

method), 192
update_column_options()

(maze.core.rendering.notebook_event_logs_viewer.NotebookEventLogsViewer
method), 93

update_policy() (maze.train.parallelization.base_worker.BaseWorker
method), 203

356 Index

Maze

update_policy() (maze.train.parallelization.distributed_actors.actor.ActorAgent
method), 206

update_progress()
(maze.core.rollout.sequential_rollout_runner.SequentialRolloutRunner
method), 101

update_ratio() (maze.train.trainers.es.es_events.ESEvents
method), 190

update_target_weights()
(maze.core.agent.torch_state_action_critic.TorchStateActionCritic
method), 114

V
validation_percentage

(maze.train.trainers.imitation.bc_algorithm_config.BCAlgorithmConfig
attribute), 200

value_loss_coef (maze.train.trainers.a2c.a2c_algorithm_config.A2CAlgorithmConfig
attribute), 174

value_loss_coef (maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

value_loss_coef (maze.train.trainers.ppo.ppo_algorithm_config.PPOAlgorithmConfig
attribute), 176

VGGConvolutionBlock (class in
maze.perception.blocks.feed_forward.vgg_conv),
127

VGGConvolutionDenseBlock (class in
maze.perception.blocks.joint_blocks.vgg_conv_dense),
136

VGGConvolutionGAPBlock (class in
maze.perception.blocks.joint_blocks.vgg_conv_gap),
137

vtrace_clip_pg_rho_threshold
(maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

vtrace_clip_rho_threshold
(maze.train.trainers.impala.impala_algorithm_config.ImpalaAlgorithmConfig
attribute), 180

W
wrap() (maze.core.wrappers.log_stats_wrapper.LogStatsWrapper

class method), 54
wrap() (maze.core.wrappers.wrapper.Wrapper class

method), 51
wrap_from_config()

(maze.core.wrappers.wrapper_registry.WrapperRegistry
method), 52

Wrapper (class in maze.core.wrappers.wrapper), 50
WrapperRegistry (class in

maze.core.wrappers.wrapper_registry), 52
write() (maze.core.log_events.log_events_writer.LogEventsWriter

method), 78
write() (maze.core.log_events.log_events_writer_tsv.LogEventsWriterTSV

method), 78
write() (maze.core.log_stats.log_stats.LogStatsWriter

method), 84

write() (maze.core.log_stats.log_stats_writer_console.LogStatsWriterConsole
method), 82

write() (maze.core.log_stats.log_stats_writer_tensorboard.LogStatsWriterTensorboard
method), 82

write() (maze.core.rollout.parallel_rollout_runner.EpisodeRecorder
method), 102

write() (maze.core.trajectory_recorder.trajectory_writer.TrajectoryWriter
method), 97

write() (maze.core.trajectory_recorder.trajectory_writer_file.TrajectoryWriterFile
method), 97

write_epoch_stats()
(maze.core.log_stats.log_stats_env.LogStatsEnv
method), 82

write_epoch_stats()
(maze.core.wrappers.log_stats_wrapper.LogStatsWrapper
method), 54

write_epoch_stats()
(maze.train.parallelization.distributed_env.dummy_distributed_env.DummyStructuredDistributedEnv
method), 206

Index 357

	Getting Started | |
	Spotlights
	Documentation Overview
	Indices and tables
	Index

